




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
FrequentPatternMiningusingSemanticFP-GrowthforEffectiveWebServiceRankingOmairDepartmentofComputerScience,UniversityofCalgary,Calgary,Alberta,Canada.:moshafiq@ucalgary.ca
RedaAlhajj,JonG.RokneDepartmentofComputerScience,UniversityofCalgary,Calgary,Alberta,Canada.AutomatedRankingiscrucialintheprocessofautomatedWebServicesexecution.Oftenadaptationandranking(usedinterchangeably)ofdiscoveredWebservicesiscarriedoutusingfunctionalandnonfunctionalinformationofWebServices.Existingapproachesareeitherfoundtobeonlyfocusingonsemanticmodelingandrepresentationonly,orusingdataminingandmachinelearningbasedapproachesonunstructuredandrawdatatoperformdiscoveryandranking.WeproposeanapproachtoallowsemanticallyformalizedrepresentationoflogsduringWebServiceexecutionandthenusesuchlogstoperformrankinganptationofdiscoveredWebServices.WehavebuiltSemanticFPTreebasedtechniquetoperformassociationrulelearningonfunctionalandnonfunctionalcharacteristicsofWebServices.TheprocessofautomatedexecutionofWebServicesisimprovedintwosteps,i.e.,(1)weprovidesemanticallyformalizedlogsthatmaintainwellstructuredandformalizedinformationaboutpastinctionsofServicesConsumersandWebServices,(2)weperformanextendedassociationruleminingonsemanticallyformalizedlogstofindoutanypossiblecorrelationinfunctionalandnonfunctionalcharacteristicsofWebServicesduringpastexecutionwhichisthenusedinautomatedrankinganptationofWebServices.WebServices;Discovery;Ranking;AssociationRuleMining;SemanticFP-Growth,SemanticLogs WebServices[1]havechangedtheWebfromstatictodynamicnaturewhereapplicationsmayactasServiceConsumersinordertoinvokeandutilizeWebServicesovertheWeb.ApplicationsasServiceConsumerscandynamicallyinvokeaWebServicebyprovidinginputandcangetaresponsebackasoutputprocessedbasedonthefunctionalityprovidedbytheWebService.BecauseoftheopennatureoftheWeb,itisnotpossibleforServiceConsumerstohaveapre-knowledgeofalltheavailableWebServicesovertheWeb[2].DynamicinvocationofWebServicesrequiresdynamicdiscoveryandrankingofWebServicesthatarefoundovertheWeb.InordertobringdynamismintheprocessofWebServiceinvocationandexecution,itiscrucialtomaketheprocessofWebServicediscoveryandrankingautomated[9].SeveralapproacheshavebeenproposedtomaketheprocessofdiscoveryandrankingofWebServicesautomated.However,wehaveseenmajorlackinginsuchapproaches.TraditionaldiscoveryandrankingapproachesforWebServiceshavebeenfoundtoo
limitedandarebasedonlyonsyntacticandpre-knowninformationofserviceswhichcauseslimitationsforuser-applicationstousenewlyavailableservices.Insteadofusingsyntacticapproaches,newapproacheshavebeenbuiltwhicharebasedonusinginformationfromsemanticallyenricheddescriptionsofWebServices.Theseapproachesrequireprecise,expressiveandmachineinterpretabledescriptionofserviceswithanaimtomakeiteasierforuserstosearchfortheservicesrequired.TheseapproacheshaveshownagoodpotentialtowardsenablingautomationinWebServicesandbecauseofthatSemanticWebServicesresearchhavegainedmomentumbutarestillfoundtobenotintheirfullpotentialtobeusedinpracticalscenariosforautomateddiscoveryandrankingofWebServicesasitwouldbeimpracticaltoassumethateveryuserandserviceproviderwillorporatefull-fledgesemanticsinrequestsaswellasWebServicedescriptions,respectively.Ontheotherhand,usingonlythebasicinformationaboutWebServices(i.e.,WSDLbasedWebServicedescriptions)doesnotprovideenoughinformationtobeabletodiscoverrequiredWebServicesoutoftheavailableones.Weattempttosolvethisdilemmabyproposingahybridapproachofpartiallyusingsemantics(suchasfunctionalandnon-functionalpropertiesofWebServices),andusethisinformationtoperformdiscoveryandrankingofWebServices. RelatedTherehasbeenalotofrelatedwork[7][10][11][13]intheareaofautomatedrankinganptationofWebServices.SuchrelatedworkspansfromusinghighlyformalizedandsemanticallyenricheddescriptionsofWebServicesanduserqueries,totheusageofdataminingandmachinelearningapproachesonrawdataofWebServices.SeveralapproacheshavebeenfoundthathaveusedassociationruleminingforadaptationandrankingofWebServicesandothersimilarsystems.Givenbelowarerelatedandexistingapproachesfollowedbycomparativeysisofsuchapproaches.WehaveobservedfromtheysisandreviewofexistingandrelatedapproacheslistedabovethatalmostalltheapproachesareeitherfocusedtowardsapplyingdataminingandheuristictechniquesonsyntacticdataofWebServicesandhencearesyntacticandlimited.WebelievethatsuchinformationislimitedandisnotenoughtofindtherankingofWebServices.WealsoexploredotherapproacheswhicharebasedonsemanticallyenricheddescriptionsofWebServices,likeNon-Functional20142014IEEEInternationalConferenceonWebProperties(NFPs),whichattempttoperformautomateddiscovery,rankingofWebServicesbutarelimited.First,suchapproachesdonottakeintoaccountanypasthistoryofinctionsofusersandWebServices,andsecond,suchapproachesdonottakeintoaccountanyextensivedataminingormachinelearningbasedapproachestomakeuseofsuchsemanticallyformalizedandwell-structureddata.Therefore,suchapproachesarestillnotintheirfullpotentialtoperformautomatedrankingofWebServices.Suchapproachesarenotonlylimitedfromtheofaccuracyandcompleteness,butarealsolimitedfromtheofscalabilityandhencetakesignificantamountoftimetoperformthetaskofautomateddiscoveryandranking.ThistakesustothedilemmaofeitheruserhighlyenrichedandformalsemanticsofWebServiceswhichwouldprovidealotofinformationaboutWebServices. OurproposedSemanticFP-GrowthalgorithmusingSemanticLogsenablestoperformeffectiveandefficientrankinganptationofWebServices.First,itproposestotakeintoaccountpastinctionsofusersandprovidersofWebServicesduringtheprocessofrankingandproposestosemanticallyformalizelogsforpastinctionsbetweenusersandprovidersofWebServices.Second,ituseslight-weightsemanticsforformalizationoflogsthatludefunctionalandnon-functionalaspectsofWebServicesaswellastheirpastinctions.Third,itprovidesanenhancedassociationruleminingalgorithmasSemanticFP-GrowthtoperformassociationruleminingbasedysisonSemanticLogswhichisthenusedtoperformrankinganptationforWebServices.Givenbelowareafewdefinitionswhichareimportanttopresenttheproposedsolution.Figure1.OverallarchitectureofproposedFigure1depictstheoverallpictureofrankingandadaptationofWebServicesusingAssociationRuleMiningbasedonSemanticFP-Growth.UserapplicationsasServiceConsumerssearchforWebServicesusingamiddlewareapplicationthatperformsdiscovery,rankingandadaptationandfinallyinvoketherequiredWebServices.Foreachinction,usersasServiceConsumersencapsulatetheirrequestsinourprescribedformforSemanticLogsandServiceProvidersmodelWebServicesusingprescribedspecificationsasperSemanticWebServices[8].EachoftherequestsfromuserapplicationsfordiscoveringandinvokingWebServicesaremodeledandstoredasSemanticLogsinarepository.SuchSemanticLogsarelateronretrievedandrepresentedintheformofSemanticFP-Treeandare
processedbyourproposedsemanticextensiontotheFP-Growthalgorithm.TheconstructedSemanticFP-TreeisthendiscretizedaftertranslatingsemanticaxiomsandgroundedintoanormalFP-TreefromwhichAssociationRulesamongdifferenteventsinthelogsarediscovered.ThediscoveredassociationrulesarethenusedduringtheprocessofrankingandadaptationofWebServicesselectionoutofthediscoveredsetofWebServicestoselectthebestone.OursolutionuniquelytakestheprocessofrankinganptationtothenextlevelbymakingtheinformationaboutWebServicesandpastinctionsformalizedandwell-structuredandthenusesassociationruleminingtechniquetoprocesstheinformation.Figure2showsaSemanticFP-TreethatisconstructedwithitemsasLogEvents,SC,SPorWS,usingthedefinitionsandalgorithmsmentionedinthissection.Logsareproducedduringtheprocessofdiscovery,ranking,adaptationandinvocationofWebServicesbyuserapplications.Logsrepresentthefoot-printofthewholeprocessofexecution.ThedescriptionoflogsishighlydependentuponWebServicedescriptions.ItcontainsasetofeventscalledLogEvents.Figure2.SemanticFPTreeofitemsinSemanticEvaluationandAssociationRulesarediscoveredandgeneratedafterprocessingandminingSemanticLogsusingourproposedapproachforSemanticextensionstoFP-Growth.Oncetheassociationrulesarediscovered,thediscoveredsetofWebServicesarematchedandranked.Wehaveuseddatasetsfrom[3][4]whichprovidedifferentparametersludingfunctionalandnon-functionalpropertiesofWebServices.TheexperimentswereperformedonInCore2CPU2.40GHz,4GBofRAM,Windows7.WeusedWeka z/ml/weka/)toperformAssociationRuleMiningondataderivedfromtheSemanticLogs.Weconductedanumberoftestsonthedatasetusedusingourproposedsolution.WestartedwithcomparisonanaïvediscoveryengineforWebServicesthatdoesnotuseanyoptimizationorrankingtechniques.WecomparedthebehaviorofbothapproachesandfoundoutthatthenaïvediscoveryenginehastogothroughthedescriptionsofalltheWebServices,whereas,ourproposedapproachshortlistsandranksWebServicestofindoutthebestoneandhenceitrequirestoprocessasmallersetofWebServicedescriptions.ThenaïvediscoveryenginehastoprocessthewholesearchspacewhichmakesitsprocessingtimeproportionaltothenumberofWebServicedescriptionsavailableirrespectiveofthenumberofWebServicesthatmaybeabletofulfilluserrequirements.Weusedanptedasignificantlyextensivetestdesigninordertomakestatisticallyfirmstatementsonthebehavioroftraditionalnaïvediscoveryapproachaswellasourownproposedapproach.Weperformedseveralrepetitivetestrunsforsearchspacesforupto500availableWebServicesdescriptionsoutofwhichonlyafewoftheWebServicescouldmatchuserrequirements.Ourproposedsolutioncouldlimitthesearchspacebyperformingtheranking,andevenbetterthantheotherrankingapproach.Whereas,thetraditionalnaïvediscoveryenginehadtosearchintoalmostallgivensearchspace.Thenextmetricusedfortheevaluationofourproposedapproachis‘precision’.PrecisionmeanstheratioofcorrectWebServicesoutofalltheWebServicesretrieved.Table1providesanoverviewofMeanAveragePrevision(MAP)calculatedfordifferenttestrunsi.e.,naïveapproachwithoutusinganyrankingtechniques,theotherrankingtechniqueandourproposedapproachforranking,ascase1,case2andcase3respectively.WehadlowerMAPforvalidationofrankedresultsbecausenaïveapproachhastogothroughwholesearchspace.Whereas,rankingapproachescase2andcase3gottopre-filterWebServices.Ourproposedapproachpre-filteredWebServicesusingassociationrulesandthenperformdiscoveryandrankingonsmallersearchspace.WefurthernoticedahigherMAPforresults,usingourproposedsolutionandhavingtoperformdiscoveryandrankingonasmall,targetedaswellasrelevantsearchspace.Inmostofthecasesduringourexperiments,precisionwasfoundtobereasonablygood.Ourproposedapproachiseventuallybasedonourearlierwork[5][6]ontryingtoachieveasuitabletrade-offbetweentheaccuracyrequiredversustime-basedefficiencyofthematakingandrankingmechanismbypartiallyutilizingsemanticsthatkeepdatawell-expressedandwell-structuredandmakesiteasierfordataminingbasedapproachestouseitratherthanonlyfocusingonmodelingWebServicedescriptionswithoverlycomplexsemanticsortryingtoemploydataminingsolutiononunstructuredaswellasdisperseddata.Table1.ComparingMeaageCaseCaseCase TheusageofassociationruleminingwithSemanticLogshelpedusintwofoldmanner,i.e.,(1)semanticlogshelpedinprovidingwell-structuredandformalizeddatafromwhichitwaseasierforourtechniquetodeduceandcollectinformation,and(2)theassociationruleminingapproachhelpedinfindingoutpotentialbenefitsanddrawbacksofusingsomeWebServicesertainscenarioswhichhelpedusinpre-filteringWebServicestohaveasmallerandmoretargetedsearchspaceandhenceleadtomoreefficientandeffectiverankingtofindrequiredWebServices.WehavefoundoutthatsemanticannotationstoWebServicesareofhighnoveltyifusedreasonablywithproperlytunedandadaptedreasoningandminingprocess.Asanextstep,wewillinvestigateandbuildfurtherhybridtechniquesinvolvingsemanticannotationsanddataminingtoaddressmoreissuesforenhancedmonitoringandmanagementofWebServicesaswellasrelatedapplicationecution.
Inthispaper,weproposedauniqueapproachforrankingandadaptationofWebServicesusingAssociationRuleMiningbasedonourproposedSemanticLogsandSemanticextensionofFP-Growth.WeyzedexistingapproachesandfoundoutthatsuchapproachesarelimitedassuchapproacheseitherfocusonlyforsemanticallyformalizingdescriptionofWebServiceswithlimitedmechanismstoutilizesuchdescriptionsoruseheuristicbasedtechniquesonlimitedandsyntacticdataofWebServicesforrankingandadaptationofWebServices.SuchapproachesalsomerelytakeintoaccountpastinctionofServiceConsumersandServiceProviders.OurproposedapproachallowssemanticallyformalizedrepresentationoflogsduringWebServiceexecutionwhicharethenusedtoperformrankingandadaptationofthediscoveredWebServices.Evaluationshowsthetrade-offofpartiallyusingsemanticswithsemanticallyadaptedAssociationRuleMiningtechniqueshelpsinimprovingWebServicesselection.TheauthorswouldliketoacknowledgeNSERC,AITFandUniversityofCalgaryforsupportingthisresearch.WebServicesatW3C:W3C mendationsonWSDLandSOAP.AvailableatM.Bell"IntroductiontoServiceOrientedModeling",ServiceOrientedModeling:Serviceysis,Design,andArchitecture.(2008).Wiley&Sons,3.Y.Zhang,Z.Zheng,M.R.Lyu,"Wpress:AQoSawareSearchEngineforWebServices",inIEEEICWS2010,pages=8390,July2010,Miami,FL,USA.Y.Li,Y.Liu,L.Zhang,G.Li,B.Xie,andJ.Sun,“AnExploratoryStudyofWebServicesontheInte”,In2007IEEEICWS,SaltLakeCity,Utah,USA,2007,pp.380387.O.Shafiq,R.Alhajj,J.Rokne:LightweightSemantics&BayesianClassification,ahybridtechniqueforwebservicediscovery,inIEEEIRI,Aug2010,LasVegas,NV,USA.O.Shafiq,R.Alhajj,J.G.Rokne,"OntheSocialAspectsofalizedRankingforWebServices",In13thIEEEHPCC2011,September242011,Banff,AB,Canada.A.Segev,E.Toch,“ContextBasedMatchingandRankingofWebServicesforComposition”,inIEEETransactionsonServicesComputing,Vol.2,No.3,pp210222,Sept2009.D.Roman,H.Lausen,andU.Keller.D2v1.3.WebService ,OctomberD.Fensel,etal.:WhatiswrongwithWebServicesDiscovery.InproceedingsoftheW3CWorkshoponFrameworksforSemanticsinWebServices,Innsbruck,Austria,June2005.W.Rong,K.Liu,L.Liang,"alizedWebServiceRankingviaUserGroupCombiningAssociationRule",IEEEICWS2009,July610,2009,LosAngeles,CA,USA.E.AlMasri,Q.H.Mahmoud:InvestigatingwebservicesonWorldWideWeb.InWWW2008,Apr2008,Beijing,.E.AlMasri,Q.H.Mahmoud,“QoSbasedDiscoveryandRankingofWebServices”,in16thIEEE Honolulu,Hawa,USA,August1316,2007.B.M.Fonseca,P.BGolgher,E.S.DeMoura,andN.Ziviani,Usingassociationrulestodiscoverysearchenginesrelatedqueries.InLAWEB'03,November2003,Santiago,Chile.FP-GrowthWebOmairShafiqReda,JonG.Rokne大学计算机科学系,加拿大塔省大学。加拿大艾伯塔。电子邮件:moshafiq@ucalgary.ca电子邮件:{alhajj,rokne}@ucalgary.ca 自动排名在自动化Web服务执行过程中至关重要。通常,使用Web服务的功能性和非功能性信息WebWebFP-TreeWebWeb1Web(2)Web可能的相关性,然后将其用于Web服务的自动排名和调整。FP-GrowthI.Web[1]WebWebWebWebWebWeb了解WebWeb2]Web服务的动态调用需要对通过WebWebWebWebWebWebWebWebWeb息(即基于WSDL的Web服务描述)并不能提供足够的信息来从可用的Web服务中发现所需的Web(Web)的混合方法来解决这一困境,并使用此信息来执行Web服务的发现和排名。7[10][11][12]13]在网络服务的自动排名和适应领域。此WebWebWebWebWebWeb(NFP),WebWeb的方法来利用此类语义形式化和结构良好的方法。数据。因此,此类方法仍未充分发挥执行Web高度丰富且形式化的Web服务语义将提供大量有关Web服务的信息。FP-GrowthWeb服务排名和适应。首先,它建议在排名过程中考虑用户和Web服务提供商过去的交互,并建议对用户和Web服务提供商之间过去交互的日志进行语义形式化。其次,它使用轻量级语义来形式化日志,包括Web服务的功能和非功能方面以及它们过去的交互。第三,它提供了一种增强的关联图1.所提出解决方案的总体架构图1描述了使用基于语义FP-Growth的关联规则挖掘对Web服务进行排序和适应的总体情况。作为服务使用者的用户应用程序使用中间件应用程序搜索Web服务,该中间件应用程序执行发现、排名和适应,并最终调用所需的Web服务。对于每次交互,作为服务消费者的用户将他们的请求封装
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络环境下的安全问题分析试题及答案
- 机电工程考试高效答题技巧与试题及答案
- 西方国家的文化政策与全球治理试题及答案
- 公共政策中的社区参与的重要性试题及答案
- 网络工程师复习重点试题及答案合集
- 及时反馈的软件设计师考试试题及答案
- 2025年初级银行从业资格(银行管理)考试练习题库
- 机电工程监测技术试题及答案
- 跨文化团队的挑战与机遇及试题答案
- 引导机电工程考试思考的实践操作试题及答案
- GB/T 30134-2025冷库管理规范
- 2025年安徽省合肥八中高考最后一卷地理试题及答案
- 安徽省合肥市45中学2025届七年级数学第二学期期末监测模拟试题含解析
- 中学生成就目标导向下的学习满意度影响机制探讨
- 预防医学知识试题及答案汇编
- 地七年级下册全册知识要点总复习-2024-2025学年七年级地理教学课件(人教版2024)
- 全国农业行业职业技能大赛(农业技术员)理论考试题(附答案)
- 直招军官面试题库及答案
- 2025至2030中国磷石膏市场行情走势监测及未来发展展望报告
- 青少年足球训练营未来三年计划
- 《中国脑卒中防治报告(2023)》
评论
0/150
提交评论