版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省宜春市澄塘中学2022-2023学年高三数学文下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知,满足不等式组,则函数的最小值是(
)A.
B.
C.
D.参考答案:D2.设a=log43,b=log86,c=0.5-0.1,则A.a>b>c
B.b>a>c
C.c>a>b
D.c>b>a参考答案:D3.已知 (
) A.
B.- C. D.-参考答案:B略4.已知集合A=,则
A.
B.
C.
D.参考答案:C略5.给出下列命题:
①平行于同一条直线的两直线互相平行;②平行于同一平面的两条直线互相平行;③垂直于同一直线的两条直线互相平行;④垂直于同一平面的两条直线互相平行.
其中真命题的个数是
(
)
A.1
B.2
C.3
D.4参考答案:B②和③的两直线还可以异面或相交.6.阅读如图所示的程序框图,运行相应的程序,则程序运行后输出的结果为()A.8 B.9 C.10 D.11参考答案:B【考点】程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的i,S的值,当i=9时,,故输出i=9,退出循环,输出i的值为9.【解答】解:当i=1时,;当i=2时,;当i=3时,,…当i=9时,,故输出i=9,故选B.【点评】本题主要考查了循环结构的程序框图,正确写出每次循环得到的i,S的值是解题的关键,属于基础题.7.如下框图,当时,等于(
)A.7
B.8
C.10
D.11参考答案:B8.函数的一个极值点在区间内,则实数的取值范围是()A.
B.
C.
D.参考答案:【知识点】导数的运算函数的零点B9B11C因为,若函数的一个极值点在区间内,则,即(-a)(3-a)<0,解得0<a<3,所以选C.【思路点拨】结合零点存在性定理及单数的单调性列出实数a满足的条件,即可求解.9.南宋数学家秦九韶早在《数书九章》中就独立创造了已知三角形三边求其面积的公式:“以小斜幂并大斜幂,减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减之,以四约之,为实,一为从隅,开方得积.”(即:,),并举例“问沙田一段,有三斜(边),其小斜一十三里,中斜一十四里,大斜一十五里,欲知为田几何?”则该三角形田面积为(
)A.84平方里
B.108平方里
C.126平方里
D.254平方里参考答案:A根据题意,,代入计算可得S=84.故选A.10.函数的定义域(
)A、
B、
C、
D、参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.已知等差数列的通项公式为,等比数列中,,记集合,把集合中的元素按从小到大依次排列,构成数列,则数列的前50项和
参考答案:12.已知M为三角形ABC内一点,且满足若∠AMB=,∠AMC=,
||=2,则
。参考答案:13.若函数,,则的最小值是_______.参考答案:【分析】由计算出的取值范围,再利用正弦函数的性质得出函数的最小值.【详解】,,所以,函数在区间上单调递增,因此,函数的最小值为,故答案为:.【点睛】本题考查正弦型函数的最值问题,解题时要求出对象角的取值范围,结合正弦函数的图象得出最值,考查分析问题和解决问题的能力,属于基础题.14.曲线在点(1,1)处的切线方程为________参考答案:略15.(坐标系与参数方程选做题)设、分别是曲线和上的动点,则与的最小距离是
.参考答案:
.将方程和化为普通方程得
结合图形易得与的最小距离是为16.已知“命题”是“命题”成立的必要不充分条件,则实数的取值范围为_________________.参考答案:17.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是
.参考答案:;,.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=2sin(x+)cos(x+)+sin2x﹣1.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若将f(x)的图象向左平移个单位,得到函数g(x)的图象,求函数g(x)在区间[0,]上的最大值和最小值,并求出取得最值时的x值.参考答案:【考点】函数y=Asin(ωx+φ)的图象变换;三角函数中的恒等变换应用.【分析】(Ⅰ)利用三角恒等变换化简函数的解析式,再利用正弦函数的单调性,求得函数f(x)的单调递增区间;利用y=Asin(ωx+φ)的图象变换可得g(x)的解析式,再利用余弦函数的定义域和值域,求得函数g(x)在区间[0,]上的最大值和最小值,并求出取得最值时的x值.【解答】解:(Ⅰ)函数f(x)=2sin(x+)cos(x+)+sin2x﹣1=sin(2x+)+sin2x﹣1=cos2x+sin2x﹣1=2sin(2x+)﹣1,令2kπ﹣≤2x+≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)若将f(x)的图象向左平移个单位,得到函数g(x)=2sin(2x++)﹣1=2cos(2x+)﹣1的图象,在区间[0,]上,2x+∈[,],故当2x+=π时,即x=时,函数取得最小值为﹣2﹣1=﹣3;当2x+=时,即x=0时,函数取得最大值为﹣1.19.在锐角△ABC中,,________,(1)求角A;(2)求△ABC的周长l的范围.注:在①,且,②,③这三个条件中任选一个,补充在上面问题中并对其进行求解.参考答案:(1)若选①,(2)【分析】(1)若选①,,得到,解得答案.(2)根据正弦定理得到,故,根据角度范围得到答案.【详解】(1)若选①,∵,且,,.(2),故,,锐角△ABC,故.,.(1)若选②,,则,,,,(2)问同上;(1)若选③=+-=×+×-,,(2)问同上;【点睛】本题考查了向量的数量积,正弦定理,三角恒等变换,意在考查学生的计算能力和综合应用能力.20.如图,两圆相交于A,B两点,P为BA延长线上任意一点,从P引两圆的割线PCD,PFE.(Ⅰ)求证:C,D,E,F四点共圆;(Ⅱ)若PF=EF,CD=2PC,求PD与PE的比值.参考答案:【考点】与圆有关的比例线段.【分析】(Ⅰ)证明△PCF∽△PED,得出∠D=∠PEC,即可证明:C,D,E,F四点共圆;(Ⅱ)利用PF=EF,CD=2PC,PC?PD=PF?PE,得出3PC2=2PF2,即可求PD与PE的比值.【解答】(Ⅰ)证明:连接DE,CF,则由割线定理得PA?PB=PC?PD=PF?PE,∴,∵∠FPC=∠DPE,∴△PCF∽△PED,∴∠D=∠PEC,∴C,D,E,F四点共圆;(Ⅱ)解:∵PF=EF,CD=2PC,PC?PD=PF?PE,∴3PC2=2PF2,∴PC=PF,PD=3PC=PF=PE,∴PD与PE的比值为.21.如图,在直三棱柱中,分别是的中点.(I)证明:;(II)求二面角的余弦值参考答案:【知识点】直线与平面的位置关系;二面角.G3,G4【答案解析】解析:(I)证明:如图,E是的中点,取为BC的中点G,连接EG、AG、ED,在中,四边形ADEF为平行四边形,,又所以
(II)解:如图,以B为原点,BC,BA,,分别为x,y,z轴,建立空间直角坐标系则直三棱柱,,如图,连接BD,在,即,BD是CD在平面内的射影,,所以二面角的余弦值为【思路点拨】根据已知条件可判定直线与平面平行,再建立空间坐标系求出二面角的余弦值.22.(13分)在△ABC中,c=2a,B=120°,且△ABC面积为.(1)求b的值;(2)求tanA的值.参考答案:【考点】正弦定理.【分析】(1)由已知利用三角形面积公式可求a,c的值,进而利用余弦定理可求b的值.(2)由余弦定理可求cosA的值,进而利用同角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴师范学院《中学教育基础》2022-2023学年第一学期期末试卷
- 淮阴师范学院《化工安全概论》2023-2024学年第一学期期末试卷
- 淮阴工学院《数字电子技术4》2021-2022学年期末试卷
- 淮阴工学院《容器造型与纸结构》2023-2024学年第一学期期末试卷
- 工程价款结算指导性案例
- 2021教师法律法规心得体会范文5篇
- 油炸食品原料的采购与供应链管理考核试卷
- 知识风暴激发专业知识的无限潜能考核试卷
- 学前教育的影响因素与挑战考核试卷
- 企业文化与员工培训的连接考核试卷
- 幼儿园优质公开课:中班音乐韵律《打喷嚏的小老鼠》课件
- 质量管理体系品质保证体系图
- 人教版(新插图)三年级上册数学 第9课时 用乘除两步计算 解决-归总问题 教学课件
- 四班三倒排班表
- 《现代汉语》考试复习题库及答案
- 13J104《蒸压加气混凝土砌块、板材构造》
- 初中语文七年级上册《世说新语二则》作业设计
- 银行业信息系统灾难恢复管理规范
- 2023老年重症患者静脉血栓栓塞症预防中国专家共识
- 2023光伏发电工程项目安全文明施工方案
- 汽车发动机构造与维修参考文献
评论
0/150
提交评论