【满分秘诀】2023学年八年级数学上册期末满分直通车必练(人教版) 全等三角形(卷1)(解析卷)_第1页
【满分秘诀】2023学年八年级数学上册期末满分直通车必练(人教版) 全等三角形(卷1)(解析卷)_第2页
【满分秘诀】2023学年八年级数学上册期末满分直通车必练(人教版) 全等三角形(卷1)(解析卷)_第3页
【满分秘诀】2023学年八年级数学上册期末满分直通车必练(人教版) 全等三角形(卷1)(解析卷)_第4页
【满分秘诀】2023学年八年级数学上册期末满分直通车必练(人教版) 全等三角形(卷1)(解析卷)_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【满分秘诀】全等三角形(解析版)【思维导图】【常见考法】【真题分点透练】【考点1全等图形定义与性质】1.(2022春•盐湖区期末)下列各组图形中,属于全等图形的是()A. B. C. D.【答案】C【解答】解:根据全等图形的定义可得C是全等图形,故选:C.2.(2021秋•信都区期末)如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为()A.100° B.90° C.60° D.45°【答案】B【解答】解:在△ABC和△FDE中,,∴△ABC≌△FDE(SAS),∴∠1=∠EDF,∵∠EDF+∠2=90°,∴∠1+∠2=90°,故选:B.【考点2全等三角形定义及性质】3.(2021秋•高阳县期末)如图,已知△ABC≌△DCB,∠A=75°,∠DBC=40°,则∠DCB的度数为()A.75° B.65° C.40° D.30°【答案】B【解答】解:∵△ABC≌△DCB,∠A=75°,∴∠D=∠A=75°,∵∠DBC=40°,∴∠DCB=180°﹣75°﹣40°=65°,故选:B.4.(2021秋•重庆期末)如图,△ABC≌△AED,点E在线段BC上,∠1=56°,则∠AED的大小为()A.34° B.56° C.62° D.68°【答案】C【解答】解:∵△ABC≌△AED,∴∠BAC=∠EAD,AB=AE,∴∠BAE=∠1=56°,∴∠B=∠AEB=(180°﹣56°)=62°,∴∠AED=∠B=62°,故选:C.5.(2022春•沙坪坝区期末)如图,点B,E,C,F在同一直线上,△ABC≌△DEF,BC=8,BF=11.5,则EC的长为()A.5 B.4.5 C.4 D.3.5【答案】B【解答】解:∵BC=8,BF=11.5,∴CF=BF﹣BC=3.5,∵△ABC≌△DEF,BC=8,∴EF=BC=8,∴EC=EF﹣CF=8﹣3.5=4.5,故选:B.6.(2022春•招远市期末)如图所示,△ABC≌△AEF.在下列结论中,不正确的是()A.∠EAB=∠FAC B.BC=EF C.CA平分∠BCF D.∠BAC=∠CAF【答案】D【解答】解:∵△ABC≌△AEF,∴∠BAC=∠EAF,∴∠BAC﹣∠EAE=∠EAF﹣∠EAC,∴∠EAB=∠FAC,故A不符合题意;∵△ABC≌△AEF,∴BC=EF,故B不符合题意;∵△ABC≌△AEF,∴AC=AF,∠ACB=∠F,∴∠ACF=∠F=∠ACB,∴CA平分∠BCF,故C不符合题意;∵△ABC≌△AEF,∴∠BAC=∠EAF,∴∠BAC>∠CAF,故D符合题意,故选:D.7.(2022春•通川区期末)如图,在Rt△ABC​中,∠ACB=90°,∠ABC=30°​,若△ABC≌△A′B′C​,且点A′​恰好落在AB​上,则∠ACA′​的度数为()A.30°​ B.45°​ C.50°​ D.60°​【答案】D【解答】解:∵∠ACB=90°,∠ABC=3​0°,∴∠A=90°﹣30°=60°​,∵△ABC≌△A′B′C​,∴CA′=CA,∴△ACA′​为等边三角形,∴∠ACA′=60°​,故选:D.8.(2021秋•民权县期末)如图,△ABC≌△ADE,且AE∥BD,∠BAD=94°,则∠BAC的度数的值为()A.84° B.60° C.48° D.43°【答案】D【解答】解:∵△ABC≌△ADE,∴∠BAC=∠EAD,AB=AD,∵∠BAD=94°,∴∠ADB=∠ABD=(180°﹣∠BAD)=43°,∵AE∥BD,∴∠EAD=∠ADB=43°,∴∠BAC=∠EAD=43°,故选:D.9.(2021秋•句容市期末)如图,Rt△AOB≌Rt△CDA,且点A、B的坐标分别为(﹣1,0),(0,2),则OD长是()A.2 B.5 C.4 D.3【答案】D【解答】解:∵点A、B的坐标分别为(﹣1,0),(0,2),∴OB=2,OA=1,∵Rt△AOB≌Rt△CDA,∴AD=OB=2,∴OD=OA+AD=1+2=3,故选:D.10.(2021秋•温州期末)如图,△ABC≌△DEF,点A,B分别对应点D,E.若∠A=70°,∠B=50°,则∠1等于()A.50° B.60° C.70° D.80°【答案】B【解答】解:在△ABC中,∠A=70°,∠B=50°,则∠C=180°﹣∠A﹣∠B=180°﹣70°﹣50°=60°,∵△ABC≌△DEF,∴∠1=∠C=60°故选:B.11.(2021秋•巢湖市期末)如图,△ACB≌△A′CB',∠BCB'=30°,则∠ACA'的度数为()A.20° B.30° C.35° D.40°【答案】B【解答】解:∵△ACB≌△A′CB',∴∠ACB=∠A′CB',∴∠ACB﹣∠A′CB=∠A′CB'﹣∠A′CB,∴∠ACA'=∠BCB'=30°,故选:B【考点3全等三角形判定】12.(2021秋•合肥期末)下列三角形与如图全等的三角形是()A. B. C. D.【答案】C【解答】解:180°﹣51°﹣49°=80°,A.只有两边相等,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项不符合题意;B.只有两边相等,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项不符合题意;C.符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项符合题意;D.只有两边相等,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项不符合题意;故选:C.13.(2021秋•大连期末)如图,DE⊥BA,DF⊥BC,垂足分别为E,F,DE=DF.则△BDE≌△BDF的依据是()A.SAS B.AAS C.SSS D.HL【答案】D【解答】解:∵DE⊥BA,DF⊥BC,∴∠BED=∠BFD=90°,在Rt△BDE和△Rt△BDF中,,∴Rt△BDE≌△Rt△BDF(HL),故选:D.14.(2021秋•汇川区期末)如图,AB∥DE,AB=DE,添加下列条件,仍不能判断△ABC≌△DEF的是()A.AC=DF B.BF=CE C.∠A=∠D D.AC∥DF【答案】A【解答】解:∵AB=DE,∵AB∥DE∴∠B=∠E,当AC=DF时,不能判定△ABC≌△DEF,当AB=DE时,且BC=EF,∠B=∠E,由“SAS”可证△ABC≌△DEF,当∠A=∠D时,且BC=EF,∠B=∠E,由“AAS”可证△ABC≌△DEF,当AC∥DF时,∠ACB=∠DFE,∠B=∠E,由“AAS”可证△ABC≌△DEF,故选:A.15.(2021秋•西宁期末)下列四个三角形中,与图中的△ABC全等的是()A. B. C. D.【答案】C【解答】解:△ABC中,∵∠B=72°,∠C=58°,∴∠A=180°﹣∠B﹣∠C=50°,∴根据“SAS”可判断△ABC下面的三角形全等.故选:C.16.(2022春•盐湖区期末)如图,∠1=∠2,添加下列条件,不能使△ABC≌△BAD的是()A.∠CAB=∠DBA B.AC=BD C.∠C=∠D D.AD=BC【答案】B【解答】解:∵∠1=∠2,AB=BA,∴当添加∠CAB=∠DBA时,根据“ASA”可证明△ABC≌△BAD,所以A选项不符合题意;当添加AC=BD时,不能判断△ABC≌△BAD,所以B选项符合题意;当添加∠C=∠D时,根据“AAS”可证明△ABC≌△BAD,所以C选项不符合题意;当添加AD=BC时,根据“SAS”可证明△ABC≌△BAD,所以D选项不符合题意;故选:B.17.(2022春•西安期末)工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA、OB上分别在取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线,这里构造全等三角形的依据是()A.SSS B.ASA C.AAS D.SAS【答案】A【解答】解:由题意可得,OC=OD,MC=MD,又∵OM=OM,∴△OMC≌△OMD(SSS),故选:A.18.(2022春•文登区期末)如图,若∠B=∠C,下列结论正确的是()A.△BOE≌△COD B.△ABD≌△ACE C.AE=AD D.∠AEC=∠ADB【答案】D【解答】解:∵∠B=∠C,∠CAE=∠BAD,∴∠AEC=∠ADB,所以D选项符合题意;∵不能确定BE=CD,AE=AD,∴不能判断△BOE≌△COD、△ABD≌△ACE,所以A、B、C选项不符合题意.故选:D.19.(2022春•宁德期末)如图,已知AB=DE,AC=DF,BE=CF.则△ABC≌△DEF的理由是()A.SAS B.ASA C.SSS D.AAS【答案】C【解答】解:∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),故选:C【考点4全等三角形判定与性质综合应用】20.(2022春•子洲县期末)如图,点E是△ABC的边AC的中点,过点C作CF∥AB,连接FE并延长,交AB于点D,若AB=9,CF=6,则BD的长为()A.2 B.2.5 C.3 D.4.5【答案】C【解答】证明:∵CF∥AB,∴∠ADE=∠F,∠FCE=∠A,∵点E为AC的中点,∴AE=CE,在△ADE和△CFE中,,∴△ADE≌△CFE(AAS),∴AD=CF=6,∵AB=9,∴BD=AB﹣AD=9﹣6=3,故选:C.21.(2022春•通川区期末)如图,AD​是△ABC​的中线,CE∥AB​交AD​的延长线于点E,AB=5,AC=7​,则AD​的取值可能是()​A.3 B.6 C.8 D.12【答案】A【解答】解:∵AD​是△ABC​的中线,∴CD=BD,∵CE∥AB,∴∠DCE=∠DBA,在△CDE和△BDA中,,∴△CDE≌△BDA(SAS),∴EC=AB=5,∵7﹣5<AE<7+5,∴2<2AD<12,∴1<AD<6,故选:A.22.(2022春•兰州期末)如图,在△ABC中,AB=AC,点D是△ABC外一点,连接AD、BD、CD,且BD交AC于点O,在BD上取一点E,使得AE=AD,∠EAD=∠BAC,若∠ABC=62°,则∠BDC的度数为()A.56° B.60° C.62° D.64°【答案】A【解答】解:∵∠EAD=∠BAC,∴∠BAC﹣∠EAC=∠EAD﹣∠EAC,即:∠BAE=∠CAD;在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴∠ABD=∠ACD,∵∠BOC是△ABO和△DCO的外角,∴∠BOC=∠ABD+∠BAC,∠BOC=∠ACD+∠BDC,∴∠ABD+∠BAC=∠ACD+∠BDC,∴∠BAC=∠BDC,∵∠ABC=∠ACB=62°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣62°﹣62°=56°,∴∠BDC=∠BAC=56°,故选:A.22.(2022春•温县校级期末)如图,在△ABC中,AD⊥BC于点D,BE⊥AC与点E,BE与AD交于点F,若AD=BD=5,CD=3,则AF的长为()A.3 B.3.5 C.2.5 D.2【答案】D【解答】解:∵BE⊥AC,AD⊥BC,∴∠AEB=∠ADC=∠BDF=90°,∵∠AFE=∠BFD,∠FBD+∠BDF+∠BFD=180°,∠AEB+∠AFE+∠DAC=180°,∴∠DAC=∠DBF,在△BDF和△ADC中,,∴△BDF≌△ADC(ASA),∴DF=CD=3,∵AF+DF=AD=5,∴AF=2,故选:D.23.(2021秋•卧龙区期末)如图,E是∠AOB平分线上的一点,EC⊥OA于点C,ED⊥OB于点D,连结CD,若∠ECD=25°,则∠AOB=()A.50° B.45° C.40° D.25°【答案】A【解答】解:∵OE平分∠AOB,EC⊥OA,ED⊥OB,∴ED=EC,∴∠EDC=∠ECD,∵∠ODE=∠OCE=90°,∴∠ODC=∠OCD,∴OC=OD,∵ED=EC,∴点O与点E都在CD的垂直平分线上,∴OE是CD的垂直平分线,∴∠AOE+∠OCD=90°,∠OCD+∠DCE=90°,∴∠AOE=∠ECD=25°,∴∠AOB=2∠AOE=50°,故选:A.24.(2021秋•偃师市期末)如图,一块三角形的玻璃打碎成四块,现要到玻璃店去配一块完全一样的玻璃,最简单的办法是()A.只带①去 B.带②③去 C.带①③去 D.只带④去【答案】D【解答】解:第①块和第②③块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第④块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带④去.故选:D.25.(2022春•沙坪坝区校级期末)如图所示,某工程队欲测量山脚两端A、B间的距离,在山旁的开阔地取一点C,连接AC、BC并分别延长至点D,点E,使得CD=AC,CE=BC,测得DE的长,就是AB的长,那么判定△ABC≌△DEC的理由是()A.SSS B.SAS C.ASA D.AAS【答案】B【解答】证明:在△ABC和△DEC中,,∴△ABC≌△DCE(SAS),故选:B.26.(2021秋•南宁期末)如图,点B,E,C,F在一条直线上,AC与DE相交于点O,AB=DE,AB∥DE,BE=CF.(1)求证:AC∥DF;(2)若∠B=65°,∠F=35°,求∠EOC的度数.【解答】证明:(1)∵AB∥DE,∴∠B=∠DEF,∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠ACB=∠F,∴AC∥DF;(2)解:由(1)得∠B=∠DEF,∠ACB=∠F,∴∠DEF=∠B=65°,∠ACB=∠F=35°,在△EOC中,∠DEF+∠ACB+∠EOC=180°,∴∠EOC=180°﹣∠DEF﹣∠ACB=180°﹣65°﹣35°=80°.27.(2022春•五华县期末)如图1,∠DAB=90°,CD⊥AD于点D,点E是线段AD上的一点,若DE=AB,DC=AE.(1)判断CE与BE的关系是.(2)如图2,若点E在线段DA的延长线上,过点D在AD的另一侧作CD⊥AD,并保持CD=AE,DE=AB,连接CB,CE,BE,试说明(1)中结论是否成立,并说明理由.【解答】解:(1)CE=BE且CE⊥BE,理由如下:∵CD⊥AD,∴∠CDE=90°,∵∠DAB=90°,∴∠CDE=∠EAB,在△CDE和△EAB中,,∴△CDE≌△EAB(SAS),∴CE=BE,∠CED=∠EBA,∵∠EBA+∠BEA=90°,∴∠CED+∠BEA=90°,∴∠CEB=90°,∴CE⊥BE,∴CE=BE且CE⊥BE.(2)(1)中结论成立,理由如下:∵CD⊥AD,∴∠CDE=90°,∵∠DAB=90°,∴∠CDE=∠EAB,在△CDE和△EAB中,,∴△CDE≌△EAB(SAS),∴CE=BE,∠CED=∠EBA,∵∠EBA+∠BEA=90°,∴∠CED+∠BEA=90°,∴∠CEB=90°,∴CE⊥BE,∴CE=BE且CE⊥BE.28.(2022春•永定区期末)如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.(1)求证:△ACB≌△BDA;(2)若∠ABC=31°,求∠CAO的度数.【解答】(1)证明:∵∠D=∠C=90°,∴△ABC和△BAD都是直角三角形,在Rt△ABC和Rt△BAD中,,∴Rt△ABC≌Rt△BAD(HL);(2)解:∵Rt△ABC≌Rt△BAD,∴∠ABC=∠BAD=31°,∵∠C=90°,∴∠BAC=59°,∴∠CAO=∠CAB﹣∠BAD=28°.29.(2022春•通川区期末)如图,在四边形ABCD​中,AB=AC,BE​平分∠CBA​,连接AE​,若AD=AE​,∠DAE=∠CAB​.(1)求证:△ADC≌△AEB​;(2)若∠CAB=36°​,求证:CD∥AB​.【解答】(1)证明:∵∠DAE=∠CAB​,∴∠DAE﹣∠CAE=∠CAB﹣∠CAE.​∴∠DAC=∠EAB.​在△DAC​和△EAB​中∵​∴△DAC≌△EAB(SAS)​(2)证明:∵AB=AC,∠CAB=36°​,∴∠ABC=∠ACB=(180°−36°)=72°,∵BE平分∠CAB,∴∠ABE=∠ABC=36°.∴∠ABE=∠BAC=36°.∵△DAC≌△EAB,∴∠DCA=∠EBA=36°.∴∠DCA=∠BAC=36°.∴CD∥AB.30.(2022春•泗阳县期末)如图,AB=AE,AC=DE,AB∥DE.(1)求证:AD=BC;(2)若∠DAB=70°,AE平分∠DAB,求∠B的度数.【解答】(1)证明:如图,∵AB∥DE,∴∠E=∠CAB.在△ABC与△EAD中.∴△ABC≌△EAD(SAS).∴AD=BC.(2)解:∵∠DAB=70°,AE平分∠DAB,∴∠DAE=∠BAC=35°.由(1)知,△ABC≌△EAD,∴∠B=∠DAE=35°.31.(2022春•新化县期末)如图,已知∠C=∠F=90°,BC=EF,AE=DB,BC与EF交于点O.(1)求证:Rt△ABC≌Rt△DEF;(2)若∠A=50°,求∠COE的度数.【解答】(1)证明:∵AE=DB,∴AE+EB=DB+EB,即AB=DE,∵∠C=∠F=90°,∴△ABC和△DEF是直径三角形,在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL);(2)解:∵∠C=90°,∠A=50°,∴∠ABC=∠C﹣∠A=90°﹣50°=40°,由(1)知Rt△ABC≌Rt△DEF,∴∠ABC=∠DEF,∴∠DEF=40°,∴∠COE=∠ABC+∠BEF=40°+40°=80°.32.(2022春•鲤城区校级期末)如图,已知AB=AC,点D,E分别是AC,AB的中点,求证:∠B=∠C.【解答】证明:∵AB=AC,点D,E分别是AC,AB的中点,∴AE=AD,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠C.33.(2022春•城阳区期末)已知:点A,D,C,B在同一条直线上,DF∥CE,DF=CE,AD=BC.求证:(1)CF=DE;(2)AF∥EB.【解答】证明:(1)∵DF∥CE,∴∠FDC=∠ECD,在△FDC和△ECD中,,∴△FDC≌△ECD(SAS),∴CF=DE;(2)∵△FDC≌△ECD,∴∠FCD=∠EDC,∵AD=BC,∴AD+DC=BC+DC,∴AC=BD,在△FAC和△EBD中,,∴△FAC≌△EBD(SAS),∴∠A=∠B,∴AF∥EB.34.(2022春•城阳区期末)已知:OA=OB,OC=OD.(1)求证:△OAD≌△OBC;(2)若∠O=85°,∠C=25°,求∠BED的度数.【解答】(1)证明:在△OAD和△OBC中,,∴△OAD≌△OBC(SAS);(2)解:∵∠O=85°,∠D=∠C=25°,∴∠OBC=180°﹣85°﹣25°=70°,∴∠BED=∠OBC﹣∠D=70°﹣25°=45°.35.(2022春•兴宁区期末)如图,△ABC中,AD是BC边上的中线,E,F为直线AD上的点,连接BE,CF,且BE∥CF.(1)求证:△BDE≌△CDF;(2)若AE=13,AF=7,试求DE的长.【解答】(1)证明:∵AD是BC边上的中线,∴BD=CD,∵BE∥CF,∴∠DBE=∠DCF,在△BDE和△CDF中,,∴△BDE≌△CDF(ASA);(2)解:∵AE=13,AF=7,∴EF=AE﹣AF=13﹣7=6,∵△BDE≌△CDF,∴DE=DF,∵DE+DF=EF=6,∴DE=3.36.(2022春•长沙期末)如图,在△ABC中,∠B=∠C,点D是边BC上一点,CD=AB,点E在边AC上.(1)若∠ADE=∠B,求证:①∠BAD=∠CDE;②BD=CE;(2)若BD=CE,∠BAC=70°,求∠ADE的度数.【解答】(1)证明:①∵在△ABC中,∠BAD+∠B+∠ADB=180°,∴∠BAD=180°﹣∠B﹣∠ADB,又∵∠CDE=180°﹣∠ADE﹣∠ADB,且∠ADE=∠B,∴∠BAD=∠CDE;②由①得:∠BAD=∠CDE,在△ABD与△DCE中,,∴△ABD≌△DCE(ASA),∴BD=CE;(2)解:在△ABD与△DCE中,,∴△ABD≌△DCE(SAS),∴∠BAD=∠CDE,又∵∠ADE=180°﹣∠CDE﹣∠ADB,∴∠ADE=180°﹣∠BAD﹣∠ADB=∠B,在△ABC中,∠BAC=70°,∠B=∠C,∴∠B=∠C=(180°﹣∠BAC)=×110°=55°,∴∠ADE=55°【考点5角平分线性质】37.(2021秋•汇川区期末)如图,BD为∠ABC的角平分线,DE⊥BC于点E,DE=6,∠A=30°,则AD的长为()A.6 B.8 C.12 D.16【答案】C【解答】解:如图所示,过D作DF⊥AB于F,∵BD为∠ABC的角平分线,DE⊥BC,DF⊥AB,∴DE=DF=6,∵∠A=30°,∴AD=2DF=12,故选:C.38.(2021秋•威县期末)下列各点中,到∠AOB两边距离相等的是()A.点P B.点Q C.点M D.点N【答案】B【解答】解:由图形可知,点Q在∠AOB的角平分线上,∴点Q到∠AOB两边距离相等,故选:B.39.(2021秋•木兰县期末)如图,BO、CO分别平分∠ABC、∠ACB,OD⊥BC于点D,OD=2,△ABC的周长为28,则△ABC的面积为()A.28 B.14 C.21 D.7【答案】A【解答】解:连接OA,作OE⊥AB于点E,作OF⊥AC于点F,∵BO,CO分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=2,∴OD=OE=OF=2,∴S△ABC=S△OAB+S△OAC+S△OBCAB•OE+AC•OF+BBC•OD=(AB+AC+BC)•OD=×28×2=28,故选:A.40.(2022春•平远县期末)如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=7cm,DE=3cm,那么AE等于()A.2cm B.3cm C.4cm D.5cm【答案】C【解答】解:∵BE平分∠ABC,DE⊥AB,∠ACB=90°,∴ED=EC,∴AE=AC﹣EC=AC﹣ED=7﹣3=4(cm),故选:C.41.(2022春•岳麓区校级期末)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC的面积是30cm2,AB=13cm,AC=7cm,则DE的长()A.3cm B.4cm C.5cm D.6cm【答案】A【解答】解:∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∴S△ABC=×AB×DE+×AC×DF=30(cm2),即×13×DE+×7×DF=30,解得DE=DF=3cm,故选:A.42.(2022春•兰州期末)某镇要在三条公路围成的一块三角形平地内修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址()A.仅有一处 B.有四处 C.有七处 D.有无数处【答案】A【解答】解:∵这个砂石场到三条公路的距离相等,砂石场在三条公路围成的三角形平地内,∴这个砂石场为三条公路所围成的三角形的内角平分线的交点,∴可供选择的地址仅有一处.故选:A.43.(2022春•港北区期末)如图,已知△ABC的周长是36cm,∠ABC和∠ACB的角平分线交于点O,OD⊥BC于点D,若OD=3cm,则△ABC的面积是()A.48cm2 B.54cm2 C.60cm2 D.66cm2【答案】B【解答】解:如图,过点O作OE⊥AC于点E,OF⊥AB于点F,连接OA,∵OB、OC分别平分∠ABC、∠ACB,OD⊥BC,∴OD=OE=OF=3(cm),∴S△ABC=S△AOB+S△BOC+S△AOC=×AB×OF+×BC×OD+×AC×OE=×OD×C△ABC=×3×36=54(cm2).故选:B.44.(2022春•汉寿县期末)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC的面积是20cm2,AB=15cm,AC=5cm,则DF的长为()A.10cm B.5cm C.4cm D.2cm【答案】D【解答】解:∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵△ABC的面积是20cm2,∴•AB•DE+AC•DF=20,即×15×DF+×5×DF=20,解得DF=2.故选:D.45.(2020秋•饶平县校级期末)如图,D是∠EAF平分线上的一点,若∠ACD+∠ABD=180°,请说明CD=DB的理由.【答案】略【解答】解:过点D分别作AE,AF的垂线,交AE于M,交AF于N则∠CMD=∠BND=90°,∵AD是∠EAF的平分线,∴DM=DN,∵∠ACD+∠ABD=180°,∠ACD+∠MCD=180°,∴∠MCD=∠NBD,在△CDM和△BDN中,∠CMD=∠BND=90°,∠MCD=∠NBD,DM=DN,∴△CDM≌△BDN,∴CD=DB.46.(2021秋•阳江期末)如图,点P是∠MON中一点,PA⊥OM于点A,PB⊥ON于点B,连接AB,∠PAB=∠PBA.求证:OP平分∠MON.【答案】略【解答】证明:∵∠PAB=∠PBA,∴PA=PB,∵PA⊥OM于点A,PB⊥ON于点B,∴P点在∠MON的平分线上,∴OP平分∠MON.47.(2021秋•红桥区期末)在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F.(1)若BE=CF,求证:AD是△ABC的角平分线.(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论