




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,则()A.2 B.0 C.-1 D.-22.在一次投篮训练中,某队员连续投篮两次.设命题是“第一次投中”,是“第二次投中”,则命题“两次都没有投中目标”可表示为A. B. C. D.3.为自然对数的底数,已知函数,则函数有唯一零点的充要条件是()A.或或 B.或C.或 D.或4.已知,则复数()A. B.2 C. D.5.幂函数的图象过点,那么的值为()A. B.64 C. D.6.设,当时,不等式恒成立,则的取值范围是A. B. C. D.7.设实数a=log23,b=A.a>b>c B.a>c>b C.b>a>c D.b>c>a8.已知点满足,则到坐标原点的距离的点的概率为()A. B. C. D.9.用,,,,这个数字组成没有重复数字的三位数,其中偶数共有()A.个 B.个 C.个 D.个10.若,,,则,,的大小关系是()A. B. C. D.11.一个盒子里有7只好的晶体管、5只坏的晶体管,任取两次,每次取一只,每一次取后不放回,在第一次取到好的条件下,第二次也取到好的概率()A. B. C. D.12.设复数z满足=i,则|z|=()A.1 B. C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.袋中装有4个黑球,3个白球,甲乙按先后顺序无放回地各摸取一球,在甲摸到了黑球的条件下,乙摸到白球的概率是_____.14.已知,则_____.15.在极坐标系中,已知圆经过点,圆心为直线与极轴的交点,则圆的极坐标方程为__________.16.=.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某校20名同学的数学和英语成绩如下表所示:将这20名同学的两颗成绩绘制成散点图如图:根据该校以为的经验,数学成绩与英语成绩线性相关.已知这名学生的数学平均成绩为,英语平均成绩,考试结束后学校经过调查发现学号为的同学与学号为的同学(分别对应散点图中的)在英语考试中作弊,故将两位同学的两科成绩取消.取消两位作弊同学的两科成绩后,求其余同学的数学成绩与英语成绩的平均数;取消两位作弊同学的两科成绩后,求数学成绩x与英语成绩y的线性回归直线方程,并据此估计本次英语考试学号为8的同学如果没有作弊的英语成绩.(结果保留整数)附:位同学的两科成绩的参考数据:参考公式:18.(12分)已知函数,,.(1)若,求不等式的解集;(2)若对任意,不等式恒成立,求实数的取值范围.19.(12分)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求AM与平面A1MD所成角的正弦值.20.(12分)在平面直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)求曲线上的直线距离最大的点的直角坐标.21.(12分)已知定义在上的函数.求函数的单调减区间;Ⅱ若关于的方程有两个不同的解,求实数的取值范围.22.(10分)设函数.(1)若为定义域上的单调函数,求实数的取值范围;(2)若,当时,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】令可得:,令,可得:,据此可得:-1.本题选择C选项.点睛:因为二项式定理中的字母可取任意数或式,所以在解题时根据题意,给字母赋值,是求解二项展开式各项系数和的一种重要方法.2、D【解析】分析:结合课本知识点命题的否定和“且”联结的命题表示来解答详解:命题是“第一次投中”,则命题是“第一次没投中”同理可得命题是“第二次没投中”则命题“两次都没有投中目标”可表示为故选点睛:本题主要考查了,以及的概念,并理解为真时,,中至少有一个为真。3、A【解析】
作出函数的图像如图所示,其中,则,设直线与曲线相切,则,即,设,则,当时,,分析可知,当时,函数有极大值也是最大值,,所以当时,有唯一解,此时直线与曲线相切.分析图形可知,当或或时,函数的图像与函数的图像只有一个交点,即函数有唯一零点.故选.【点睛】本小题主要考查分段函数的图象与性质,考查函数零点问题的处理方法,考查利用导数求相切时斜率的方法,考查数形结合的数学思想方法.首先画出函数的图象,分段函数的图象注意分界点的位置是实心的函数空心的.然后将函数的零点问题转化为两个函数图象的交点来解决.4、A【解析】
由题意结合复数的运算法则和复数的性质整理计算即可求得最终结果.【详解】由题意可得:,则.本题选择A选项.【点睛】本题主要考查复数的运算法则,复数的模的计算等知识,意在考查学生的转化能力和计算求解能力.5、A【解析】
设幂函数的解析式为∵幂函数的图象过点.选A6、A【解析】∵当时,不等式恒成立∴当时,不等式恒成立令,则∵∴当时,,即在上为减函数当时,,即在上为增函数∴,即令,则∴当时,,即在上为减函数当时,,即在上为增函数∴∵∴或故选A点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立,转化为;(3)若恒成立,可转化为.7、A【解析】分析:利用指数函数、对数函数的单调性及中间量比较大小.详解:∵a=log23>log22=1,0<b=1312<(1c=log132∴a>b>c.故选A.点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值0,1的应用,有时候要借助其“桥梁”作用,来比较大小.8、B【解析】
作出图象,得到点P的坐标围成的图形是以原点为中心的边长为正方形,到坐标原点O的距离的点P围成的图形是以原点为圆心,半径为1的圆,由此利用几何概型能求出到坐标原点O的距离的点P的概率.【详解】点满足,
当,时,;
当,时,;
当,时,;
当,时,.
作出图象,得到点P的坐标围成的图形是以原点为中心的边长为正方形,
到坐标原点O的距离的点P围成的图形是以原点为圆心,半径为1的圆,
到坐标原点O的距离的点P的概率为:
.
故选:B.【点睛】本题考查概率的求法,几何概型等基础知识,考查运算求解能力,是中档题.9、B【解析】
利用分类计数原理,个位数字为时有;个位数字为或时均为,求和即可.【详解】由已知得:个位数字为的偶数有,个位数字为的偶数为,个位数字为的偶数有,所以符合条件的偶数共有.故选:B【点睛】本题考查了分类计数运算、排列、组合,属于基础题.10、A【解析】分析:利用定积分,将已知化简,即可比较大小.详解:由题意,可得,,,则,所以,故选A.点睛:本题主要考查了定积分的运算,其中根据微积分基本定理,求解的值是解答的关键,着重考查了推理与运算能力.11、C【解析】
第一次取到好的条件下,第二次即:6只好的晶体管、5只坏的晶体管中取到好的概率,计算得到答案.【详解】第一次取到好的条件下,第二次即:6只好的晶体管、5只坏的晶体管中取到好的概率故答案选C【点睛】本题考查了条件概率,将模型简化是解题的关键,也可以用条件概率公式计算.12、A【解析】试题分析:由题意得,,所以,故选A.考点:复数的运算与复数的模.二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】分析:结合古典概型概率公式,直接利用条件概率公式求解即可详解:设甲摸到黑球为事件,则,乙摸到白球为事件,则,设甲摸到黑球的条件下,乙摸到球的概率为,故答案为.点睛:本题主要考查古典概型概率公式以及独立事件的概率公式,条件概率公式,意在考查综合运用所学知识解答问题的能力,属于简单题.14、【解析】
令分别代入等式的两边,得到两个方程,再求值.【详解】令得:,令得:,.【点睛】赋值法是求解二项式定理有关问题的常用方法.15、【解析】
根据题意,令,可以求出圆的圆心坐标,又因为圆经过点,则圆的半径为C,P两点间的距离,利用极坐标公式即可求出圆的半径,则可写出圆的极坐标方程.【详解】在中,令,得,所以圆的圆心坐标为.因为圆经过点,所以圆的半径,于是圆过极点,所以圆的极坐标方程为.【点睛】本题考查用极坐标公式求两点间的距离以及求点的坐标,考查圆的极坐标方程,考查了学生的计算能力,属于基础题.16、【解析】令=y≥0,则(y≥0),∴表示的是上半圆在第一象限的部分的面积,其值等于,,所以=+=.考点:定积分.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、90分;分.【解析】
计算出剩下名学生的数学、英语成绩之和,于是求得平均分;可先计算出,再利用公式可计算出线性回归方程,代入学号为的同学成绩,即得答案.【详解】由题名学生的数学成绩之和为,英语成绩之和为取消两位作弊同学的两科成绩后,其余名学生的数学成绩之和为其余名学生的英语成绩之和为其余名学生的数学平均分,英语平均分都为;不妨设取消的两名同学的两科成绩分别为数学成绩与英语成绩的线性回归方程代入学号为的同学成绩,得本次英语考试学号为的同学如果没有作弊,他的英语成绩估计为分.【点睛】本题主要考查平均数及方差,线性回归方程的相关计算,意在考查学生的转化能力,分析能力及运算技巧,难度中等.18、(1);(2).【解析】试题分析:(Ⅰ)当时,.对解析分类讨论,可求不等式的解集;(2)当时,的最大值为,要使,故只需;当时,的最大值为,要使,故只需,由此可求实数的取值范围.试题解析:(Ⅰ)当时,.①当时,恒成立,∴;②当时,,即,即或.综合可知:;③当时,,则或,综合可知:.由①②③可知:或.(Ⅱ)当时,的最大值为,要使,故只需,则,∴;当时,的最大值为,要使,故只需,∴,从而.综上讨论可知:.19、(1)见解析(2)【解析】
要证线面平行,先证线线平行建系,利用法向量求解。【详解】(1)连接ME,BC∵M,E分别为B1B,BC的中点∴又∵∴A1DCB1是平行四边形∴∴∴NDEM是平行四边形∴NM∥DE又NM平面C1DE∴NM∥平面C1DE(2)由题意得DE与BC垂直,所以DE与AD垂直:以D为原点,DA,DE,DD1三边分别为x,y,z轴,建立空间坐标系O-xyz则A(2,0,0),A1(2,0,4),M(1,,2)设平面A1MD的法向量为则∴解得又∴∴AM与平面A1MD所成角的正弦值.【点睛】要证线面平行,可证线线平行或面面平行。求线面所成角得正弦值,可用几何法做出线面角,再求正弦值;或者建立空间直角坐标系,利用法向量求解。20、(1)(2)【解析】分析:(1)利用极坐标与直角坐标互化公式可得曲线的直角坐标方程为.(2)直线方程为,设圆上点的坐标为,结合点到直线距离公式和三角函数的性质可知满足题意时点坐标为.详解:(1)因为,,,所以曲线的直角坐标方程为.(2)直线方程为,圆的标准方程为,所以设圆上点坐标为,则,所以当,即时距离最大,此时点坐标为.点睛:本题主要考查极坐标方程与直角坐标方程的转化,直线与圆的位置关系,三角函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.21、时,的单调减区间为;当时,函数的单调减区间为;当时,的单调减区间为;Ⅱ.【解析】
分三种情况讨论,根据一次函数的单调性、二次函数图象的开口方向,可得不同情况下函数的单调减区间;Ⅱ若关于的方程有两个不同的解,等价于有两个不同的解,令利用导数研究函数的单调性,结合极限思想,分析函数的单调性与最值,根据数形结合思想,可得实数的取值范围.【详解】当时,,函数的单调减区间为;当时,的图象开口朝上,且以直线为对称轴,函数的单调减区间为.当时,的图象开口朝下,且以直线为对称轴,函数的单调减区间为;Ⅱ若关于x的方程有两个不同的解,即有两个不同的解,令则令,则,解得,当时,,函数为增函数,当时,,函数为减函数,故当时,函数取最大值1,又由,故时,的图象有两个交点,有两个不同的解,即时,关于x的方程有两个不同的解.【点睛】本题考查的知识点是二次函数的图象和性质,利用导数研究函数的单调性、极值以及函数的零点,属于难题.函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数的零点函数在轴的交点方程的根函数与的交点.22、(1);(2)见解析【解析】
(1)求得的导数,,得到方程的判别式,分和、三种讨论,求得函数的单调性,即可求解;(2)由,当时,只需,故只需证明当时,,求得函数的单调性与最值,即可求解.【详解】(1)由题意,函数的定义域为,则,方程的判别式.(ⅰ)若,即,在的定义域内,故单调递增.(ⅱ)若,则或.若,则,.当时,,当时,,所以单调递增.若,单调递增.(ⅲ)若,即或,则有两个不同的实根,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 一建机电纸板课件
- 中医护理骨干总结汇报
- 车棚防水施工方案
- 急救物品管理规范
- 携手AI共育未来人工智能科普教育主题活动课件
- 大学高等数学知识点总结
- 妇幼信息培训课件
- 2025导游证《政策与法律法规》考前冲刺必会300题-含答案
- 安徽省滁州市2025届高考化学三模试卷含解析
- 工程项目安全管理培训
- 2025年深入学习贯彻“中央八项规定”精神知识竞赛测试题库及答案
- 义乌市事业单位招聘考试真题2024
- 企业廉洁风险防控课件教学
- T-SDFA 047-2024 混合型饲料添加剂中卡那霉素的测定 液相色谱-串联质谱法
- 中医护理三基练习题库+答案
- 2025年护士三基考核试题及答案
- 七年级下册2025春季历史 教学设计《明朝对外关系》 学习资料
- 《设备管理标准化实施手册》
- 2025年上海市各区中考语文一模卷【说明文阅读题】汇集练附答案解析
- 湖南省长沙市明达中学2024-2025学年九年级下学期入学考试英语试卷(含答案无听力原文及音频)
- 汽车站建设项目可行性研究报告
评论
0/150
提交评论