版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是定义在上的奇函数,对任意,,都有,且对于任意的,都有恒成立,则实数的取值范围是()A. B. C. D.2.给出以下命题,其中真命题的个数是若“或”是假命题,则“且”是真命题命题“若,则或”为真命题已知空间任意一点和不共线的三点,若,则四点共面;直线与双曲线交于两点,若,则这样的直线有3条;A.1 B.2 C.3 D.43.椭圆与直线相交于两点,过中点与坐标原点连线斜率为,则()A. B. C.1 D.24.已知函数f(x)=则)等于()A.4 B.-2C.2 D.15.六位同学站成一排照相,若要求同学甲站在同学乙的左边,则不同的站法有()A.种 B.种 C.种 D.种6.已知变量x,y呈现线性相关关系,回归方程为,则变量x,y是()A.线性正相关关系 B.线性负相关关系C.由回归方程无法判断其正负相关关系 D.不存在线性相关关系7.下列命题①多面体的面数最少为4;②正多面体只有5种;③凸多面体是简单多面体;④一个几何体的表面,经过连续变形为球面的多面体就叫简单多面体.其中正确的个数为()A.1 B.2 C.3 D.48.若,则下列不等式中成立的是()A. B. C. D.9.某单位为了落实“绿水青山就是金山银山”理念,制定节能减排的目标,先调查了用电量y(单位:千瓦·时)与气温x(单位:oC)之间的关系,随机选取了4天的用电量与当天气温,x(单位:oC171410-1y(单位:千瓦•时)24343864由表中数据得线性回归方程:y=-2x+a,则由此估计:当某天气温为12oC时,A.56千瓦•时 B.36千瓦•时 C.34千瓦•时 D.38千瓦•时10.在复平面内,复数,则对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知,若的必要条件是,则a,b之间的关系是()A. B. C. D.12.如图,在中,.是的外心,于,于,于,则等于()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.有一个体积为2的长方体,它的长、宽、高依次为a,b,1,现将它的长增加1,宽增加2,且体积不变,则所得长方体高的最大值为________;14.湖面上有个相邻的小岛,,,,,现要建座桥梁,将这个小岛连接起来,共有__________不同方案.(用数字作答)15.某地环保部门召集6家企业的负责人座谈,其中甲企业有2人到会,其余5家企业各有1人到会,会上有3人发言,则发言的3人来自3家不同企业的可能情况的总数为_______.16.如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D,E,F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的首项为1.记.(1)若为常数列,求的值:(2)若为公比为2的等比数列,求的解析式:(3)是否存在等差数列,使得对一切都成立?若存在,求出数列的通项公式:若不存在,请说明理由.18.(12分)已知,命题:对,不等式恒成立;命题,使得成立.(1)若为真命题,求的取值范围;(2)当时,若假,为真,求的取值范围.19.(12分)已知函数(1)若函数的导函数为偶函数,求的值;(2)若曲线存在两条垂直于轴的切线,求的取值范围20.(12分)已知函数.(1)求的最小正周期;(2)求的最大值,并说明取最大值时对应的的值.21.(12分)已知函数,.(1)若函数的图象与直线相切,求实数的值;(2)设函数在区间内有两个极值点.(ⅰ)求实数的取值范围;(ⅱ)若恒成立,求实数的取值范围.22.(10分)已知函数,当时,函数有极小值.(1)求的解析式;(2)求在上的值域.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
由可判断函数为减函数,将变形为,再将函数转化成恒成立问题即可【详解】,又是定义在上的奇函数,为R上减函数,故可变形为,即,根据函数在R上为减函数可得,整理后得,在为减函数,为增函数,所以在为增函数,为减函数在恒成立,即,当时,有最小值所以答案选B【点睛】奇偶性与增减性结合考查函数性质的题型重在根据性质转化函数,学会去“”;本题还涉及恒成立问题,一般通过分离参数,处理函数在某一区间恒成立问题2、C【解析】(1)若“或”是假命题,则是假命题p是真命题,是假命题是真命题,故且真命题,选项正确.(2)命题“若,则或”的逆否命题是若a=2,且b=3,则a+b=5.这个命题是真命题,故原命题也是真命题.(3)∵++=1,∴P,A,B,C四点共面,故(3)正确,(4)由双曲线方程得a=2,c=3,即直线l:y=k(x﹣3)过双曲线的右焦点,∵双曲线的两个顶点之间的距离是2a=4,a+c=2+3=5,∴当直线与双曲线左右两支各有一个交点时,当k=0时2a=4,则满足|AB|=5的直线有2条,当直线与实轴垂直时,当x=c=3时,得,即=,即则y=±,此时通径长为5,若|AB|=5,则此时直线AB的斜率不存在,故不满足条件.综上可知有2条直线满足|AB|=5,故(4)错误,故答案为C.3、A【解析】试题分析:设,可得,,由的中点为,可得,由在椭圆上,可得,两式相减可得,整理得,故选A.考点:椭圆的几何性质.【方法点晴】本题主要考查了直线与椭圆相交的位置关系,其中解答中涉及到椭圆的标准方程及其简单的几何性质的应用,当与弦的斜率及中点有关时,可以利用“点差法”,同时此类问题注意直线方程与圆锥曲线方程联立,运用判别式与韦达定理解决是解答的关键,着重考查了学生的推理与运算能力,属于中档试题.4、B【解析】,则,故选B.5、C【解析】
先作分类,甲在左边第一位,有;甲在左边第二位,有;甲在左边第三位,有;甲在左边第四位,有;甲在左边第五位,有;然后直接相加求解即可【详解】甲在左边第一位,有;甲在左边第二位,有;甲在左边第三位,有;甲在左边第四位,有甲在左边第五位,有;不同的站法有种,选C.【点睛】本题考查排列问题,属于基础题6、B【解析】
根据变量x,y的线性回归方程的系数0,判断变量x,y是线性负相关关系.【详解】根据变量x,y的线性回归方程是1﹣2x,回归系数2<0,所以变量x,y是线性负相关关系.故选:B.【点睛】本题考查了由线性回归方程判断变量是否正负相关问题,是基础题目.7、D【解析】
根据多面体的定义判断.【详解】正多面体只有正四、六、八、十二、二十,所以①②正确.表面经过连续变形为球面的多面体就叫简单多面体.棱柱、棱锥、正多面体等一切凸多面体都是简单多面体.所以③④正确.故:①②③④都正确【点睛】根据多面体的定义判断.8、A【解析】
对于A,用不等式的性质可以论证,对于B,C,D,列举反例,可以判断.【详解】∵a<0,∴|a|=﹣a,∵a<b<0,∴﹣a>﹣b>0,∴|a|>﹣b,故结论A成立;取a=﹣2,b=﹣1,则∵,∴B不正确;,∴,∴C不正确;,,∴,∴D不正确.故选:A.【点睛】本题考查不等式的性质,解题的关键是利用不等式的性质,对于不正确结论,列举反例.9、B【解析】
计算出x和y的值,将点x,y的坐标代入回归直线方程,得出a的值,再将x=12代入可得出【详解】由题意可得x=17+14+10-14由于回归直线过样本的中心点x,y,则-2×10+a回归直线方程为y=-2x+60,当x=12时,y=-2×12+60=36(千瓦·【点睛】本题考查回归直线方程的应用,解题的关键在于利用回归直线过样本中心点x,10、A【解析】
化简复数,计算,再计算对应点的象限.【详解】复数对应点为:故答案选A【点睛】本题考查了复数的计算,共轭复数,复数对应点象限,意在考查学生的计算能力.11、A【解析】试题分析:不等式的解集为,不等式的解集为,根据题意可知是的子集,所以有,故选A.考点:绝对值不等式,充要条件的判断.12、D【解析】由正弦定理有,为三角形外接圆半径,所以,在中,,同理,所以,选D.二、填空题:本题共4小题,每小题5分,共20分。13、;【解析】
由体积公式得,长宽高变化后体积公式为,这样可用表示,然后结合基本不等式求得最值.【详解】依题意,设新长方体高为,则,∴,当且仅当时等号成立.∴的最大值为.故答案为.【点睛】本题考查长方体体积,考查用基本不等式求最值,属于中档题型.14、135【解析】分析:个相邻的小岛一共可座桥梁,选座,减去不能彼此连接的即可。详解:个相邻的小岛一共可座桥梁,选座不能彼此连接,共135种。点睛:转化问题为组合问题。15、30种【解析】
对发言的3人进行讨论,一类是3个中有来自甲企业,一类是3人中没有来自甲企业.【详解】(1)当发言的3人有来自甲企业,则共有:;(2)当发言的3人没有来自甲企业,则共有:;所以可能情况的总数为种.【点睛】本题考查分类与分步计数原理,解题的关键在于对3个发言人来自企业的讨论,即有来自甲和没有来自甲.16、【解析】如下图,连接DO交BC于点G,设D,E,F重合于S点,正三角形的边长为x(x>0),则.,,三棱锥的体积.设,x>0,则,令,即,得,易知在处取得最大值.∴.点睛:对于三棱锥最值问题,需要用到函数思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导的方式进行解决.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)存在等差数列满足题意,【解析】
(1)根据常数列代入其值得解;(2)根据等比数列和用赋值法解决二项式展开式的相关问题求解;(3)对于开放性的问题先假设存在等差数列,再推出是否有恒成立的结论存在,从而得结论.【详解】解:(1)∵为常数列,∴.∴(2)∵为公比为2的等比数列,.∴∴故.(3)假设存在等差数列,使得对一切都成立,设公差为,则相加得∴.∴恒成立,即恒成立,∴故能为等差数列,使得对一切都成立,它的通项公式为【点睛】本题关键在于观察所求式子的特征运用二项式展开式中的赋值法的思想,属于难度题.18、(1);(2).【解析】
(1),即,可解出实数的取值范围;(2)先求出命题为真命题时实数的取值范围,再分析出命题、中一个是真命题,一个是假命题,即可的得出实数的取值范围.【详解】(1)∵对任意,不等式恒成立,,即,即,解得,因此,若为真命题时,实数的取值范围是;(2),且存在,使得成立,,命题为真时,.∵且为假,或为真,∴、中一个是真命题,一个是假命题.当真假时,则,解得;当假真时,,即.综上所述,的取值范围为.【点睛】本题考查利用命题的真假求参数,同时也考查了利用复合命题的真假求参数问题,解题的关键就是要确定简单命题的真假,考查分类讨论思想的应用,属于中等题.19、(1);(2)【解析】
(1)求出函数的导数,由于二次函数为偶函数,所以一次项系数为,进而求得a的值;(2)由题意得存在两个不同的根,转化成二次函数的判别式大于.【详解】(1)∵,由题因为为偶函数,∴,即(2)∵曲线存在两条垂直于轴的切线,∴关于的方程有两个不相等的实数根,∴,即,∴.∴a的取值范围为.【点睛】本题考查三次函数的导数、二次函数的奇偶性、二次函数根的分布问题,考查逻辑推理和运算求解能力,求解时要懂得把曲线存在两条垂直于轴的切线转化成方程有两根.20、(1)的最小正周期为(2)时,取得最大值【解析】
降次化为的形式再通过求出最小正周期。根据的性质求出最大值即可。【详解】(1),所以的最小正周期为.(2)由(1)知.当时,即时,取得最大值.【点睛】本题考查三角函数的基本性质,属于基础题。21、(1).(2)(ⅰ);(ⅱ)【解析】
求导并设出切点,建立方程组,解出即可;
(ⅰ)求导得,令,则函数在上有两个零点,,由此建立不等式组即可求解;
(ⅱ)由根与系数的关系可得,,且,故,通过换元令,可得,令,由导数研究其最值即可.【详解】(1)由得,所以切点为,代入,即,得.(2),,(ⅰ)由题意知方程在内有两个不等实根,可得,解得,故实数的取值范围为.(ⅱ)因为恒成立,所以恒成立,由(ⅰ)知,(,),当,,所以,则在区间上为单调减函数,故,,令,由得,记,因为,所以在上为减函数,所以在上的取值集合为.因为恒成立,所以,故实数的取值范围为.【点睛】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医学伦理委员会主任:医学伦理学在临床实践中的应用
- 医疗信息化技术发展与挑战应对策略讲座
- 医疗政策分析与发展趋势
- 医院内部审计与合规性执行力度
- 医学检验技术在疾病诊断与治疗中的应用研究前沿
- 2026年电动腿托与腰托项目投资计划书
- 养老院活动策划制度
- 移动医疗APP开发与应用
- 医疗器械质量管理与使用
- 医疗资源配置策略分析
- 2025年广东省深圳市检察官逐级遴选笔试题目及答案
- 2026湖北随州市纪委监委机关专项招聘以钱养事工作人员3人考试参考试题及答案解析
- 齿轮泵的课件
- 2025年苏州工业园区领军创业投资有限公司招聘备考题库及1套完整答案详解
- 2025网格员考试理论题目及答案
- 2026年记者(新闻基础知识)自测试题及答案
- 2026年山东黄河河务局山东黄河医院公开招聘高校毕业生参考笔试试题及答案解析
- 2026届高考政治一轮复习:选择性必修1~3共3册必背主干知识点考点汇编
- 万物皆模型:100个思维模型
- 门禁系统调试测试方案
- 中药硬膏贴敷疗法
评论
0/150
提交评论