版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一节开口薄壁杆件的扭转一开口薄壁截面的剪力流和剪力中心第一节开口薄壁杆件的扭转一开口薄壁截面的剪力流和剪力中心1代入上式得截面上的剪力流为:式中:剪力流合力Qx和Qy的交点C称为剪力中心,又称弯曲中心、扭转中心代入上式得截面上的剪力流为:式中:剪力流合力Qx和Qy的交点2剪力中心C点的位置可由合力的力矩等于各分力力矩之和来确定因此:同理,由Qy=0,可得0—截面形心到截面中心线上微段ds的切线的垂直距离剪力中心C点的位置可由合力的力矩等于各分力力矩之和来确定因此3若定义若定义4例4-1槽形截面在Qy作用下截面上的剪力流和剪力中心位置解1.剪力流选下翼缘端点1作为曲线坐标s的起始点下翼缘(bs0)点2(s=b)腹板(b+hsb)例4-1槽形截面在Qy作用下截面上的剪力流和剪力中心位置解5点3(s=h/2+b)点4(s=h+b)点3(s=h/2+b)点4(s=h+b)62。剪力中心坐标(x0,y0)单轴对称,剪力中心C位于对称轴x轴上,即y0=0图乘法对槽形截面,0分别为h/2和e剪心坐标也可利用(4-4)时求得:建立以形心O为极点,以下翼缘自由端点1为起始点(称为扇性零点)的扇性坐标0图2。剪力中心坐标(x0,y0)单轴对称,剪力中心C位于对称轴7下翼缘(bs0)点2(s=b)腹板(b+hsb)点3(s=b+h/2)点4(s=h+b)下翼缘(bs0)点2(s=b)腹板(b+hsb)点38上翼缘(2b+hsb+h)点5(s=2b+h)由0图应用图乘法可得:因此上翼缘(2b+hsb+h)点5(s=2b+h)由0图应9二开口薄壁杆件的扭转形式1。自由扭转或圣维南扭转又称纯扭转或均匀扭转截面只有扭转引起的剪应力2。约束扭转又称弯曲扭转或非均匀扭转截面产生不同的纵向正应力-翘曲正应力或扇性正应力,同时产生与翘曲正应力保持平衡的剪应力-翘曲剪应力。二开口薄壁杆件的扭转形式1。自由扭转或圣维南扭转又称纯扭转或10三开口薄壁杆件的纯扭转对开口薄壁杆件,由弹性力学得到:式中:Mk—纯扭转扭矩,采用右手螺旋规则定其正负号;
G—材料的剪切弹性模量;
—截面的扭转角,其正负号与Mk相同;‘—杆件单位长度的扭转角,或称扭率;
Ik—截面的扭转常数或纯扭惯性矩。对于狭长矩形截面:当截面由几个狭长矩形元素组成时:三开口薄壁杆件的纯扭转对开口薄壁杆件,由弹性力学得到:式中11结构稳定理论第四章课件12四开口薄壁杆件的约束扭转两个基本假设:1。假设截面在扭转前的形状与扭转后在垂直于杆轴平面内的投影形状相同—截面形状不变假定。截面上任意点B(x,y)在xoy平面内位移,可以将截面看成刚体运动求得。u、v和w为B点沿坐标轴x、y和z方向的位移,和为B点沿曲线坐标s方向的切线和法线方向的位移,c为剪力中心C到B点切线的垂直距离。四开口薄壁杆件的约束扭转两个基本假设:1。假设截面在扭转前13结构稳定理论第四章课件142.假定约束扭转时,杆件中面的剪应变为零对于t/b1/10,轮廓尺寸/长度1/10构件比较精确。对s积分一次可得:—以剪力中心C为极点,以A点为起始点的扇性坐标。式中:f(z)—积分后出现的函数,与坐标s无关;起始点A的扇性坐标为零,因此A点称为扇性零点。2.假定约束扭转时,杆件中面的剪应变为零对于t/b1/115当杆件仅受扭矩作用时,截面上正应力的合力为零:得到:代入(4-11)后可得:当杆件仅受扭矩作用时,截面上正应力的合力为零:得到:代入(416可以选择扇性零点的位置使满足条件AcdA=0的扇性零点称为主扇性零点。将(4-12)积分一次后代入(4-9)得:C1为积分常数,表示杆件扭转时轴向刚性位移,即自由翘曲位移,只与坐标s有关,不随杆长变化。可以选择扇性零点的位置使满足条件AcdA=0的扇性零点称17相邻截面的翘曲不等,各截面翘曲正应力也不等,因此会产生翘曲剪应力,假定沿厚度为均匀分布,根据平衡条件得:对s积分一次,并将(4-13)式代入可得:截面自由边处=0,当积分界限从自由边处开始时,得积分常数C2=0。因此离自由边为s处的翘曲剪应力为相邻截面的翘曲不等,各截面翘曲正应力也不等,因此会产生翘曲剪18式中:整个截面上的翘曲剪应力对剪力中心形成合力矩,叫做翘曲扭矩,又称约束扭转力矩。式中I为翘曲扭转常数或翘曲惯性矩,又称主惯性矩。式中:整个截面上的翘曲剪应力对剪力中心形成合力矩,叫做翘曲扭19由(4-15)、(4-16)两式消去”’后得:引入一个新力素,定义B称为双力矩。代入(4-13)得:由(4-16)、(4-20)消去后得:由(4-15)、(4-16)两式消去”’后得:引入一个新力20在约束扭转杆件中:(4-5)、(4-16)代入上式后得:在约束扭转杆件中:(4-5)、(4-16)代入上式后得:21当杆件承受均布扭矩时:截面上剪应力为:当杆件承受均布扭矩时:截面上剪应力为:22计算此截面的扇性几何特征n、S和I,并求储此梁的最大双力矩。纯扭矩和翘曲扭矩。解1。截面扇性几何特性阅读夏志斌教授《结构稳定理论》P187例5-2计算此截面的扇性几何特征n、S和I,并求储此梁的最大双23取剪力中心C为极点,任取一点2为起始点求扇性坐标c在c图上减去-hf/2后即得n图取剪力中心C为极点,任取一点2为起始点求扇性坐标c在c图24有了n根据(4-17)应用图乘法求截面主扇性惯性矩求截面主扇性惯性矩积分必须以截面自由边为起始点。有了n根据(4-17)应用图乘法求截面主扇性惯性矩求截面主25结构稳定理论第四章课件262。最大双力矩、纯扭转扭矩和翘曲扭矩(4-22)可改写为:通解为:对称关系,梁的左半段边界条件z=0时,=”=0对称条件z=l/2时,’=0可得积分常数C1、C2和C3。及其导数表达式为:2。最大双力矩、纯扭转扭矩和翘曲扭矩(4-22)可改写为:通27由(4-5)式得:当z=0时,Mk值最大由(4-5)式得:当z=0时,Mk值最大28由(4-16)式得:当z=l/2时,M值最大当z=0时,M值最小由(4-19)式得:当z=l/2时,B值最大由(4-16)式得:当z=l/2时,M值最大当z=0时,29结构稳定理论第四章课件30五开口薄壁杆件的扭转应变能纯扭转由(4-5)式得:代入上式并对全长积分得纯扭转时应变能为:翘曲扭矩引起的应变能包括翘曲正应力和翘曲剪应力在相应变形上所作功的总和,但引起的应变能较小,忽略不计,因此:五开口薄壁杆件的扭转应变能纯扭转由(4-5)式得:代入上式31将(4-13)代入上式,积分后得到:约束扭转时的应变能为:将(4-13)代入上式,积分后得到:约束扭转时的应变能为:32第二节轴心受压时开口薄壁杆件的弯扭屈曲临界荷载中性平衡方程剪心C沿x和y轴方向平移u和v,截面绕剪力中心扭转角,点B(x,y)沿x和y轴方向位移为:假定屈曲时杆件处于弹性工作阶段和小变形状态,并假定截面的周边形状保持不变,无初始缺陷。第二节轴心受压时开口薄壁杆件的弯扭屈曲临界荷载中性平衡方程33一中性平衡方程的建立(一)通过势能驻值原理来推导将(4-27)和=P/A代入上式,并注意O为形心,x和y轴为形心主轴,得:一中性平衡方程的建立(一)通过势能驻值原理来推导将(4-234式中可以写成:根据势能驻值原理:式中可以写成:根据势能驻值原理:35因而得:欧拉方程将(4-31)中被积函数代入(4-32)式后得到弯扭屈曲中性平衡方程为:因而得:欧拉方程将(4-31)中被积函数代入(4-32)式后36(二)假想荷载法—符拉索夫虚拟荷载法均布荷载不通过剪力中心,产生均布扭矩:(二)假想荷载法—符拉索夫虚拟荷载法均布荷载不通过剪力中心37将=P/A代入(4-34)和(4-35)式,对整个截面积分,并注意O为形心,x和y轴为形心主轴,可得:将(4-36)式代入梁的弯曲微分方程EIyuIV-qx=0和EIxvIV-qx=0及扭转微分方程(4-23),即可求出中性平衡方程,此方程与(4-33)式完全相同。将=P/A代入(4-34)和(4-35)式,对整个截面积分38二临界荷载的确定(一)假设位移函数,将微分方程组化为求解代数方程组如杆段简支时,边界条件为假设位移函数为:A、B和C—广义坐标或参变数n=1,2,3,…—弹性曲线的半波数将它代入(4-33)式,并令:二临界荷载的确定(一)假设位移函数,将微分方程组化为求解代39得到线性齐次代数方程组为:特征方程为:或解此方程式所得P的最小根,即为所求的临界力Pcr。得到线性齐次代数方程组为:特征方程为:或解此方程式所得P的最40当杆端为固定时,边界条件为:假设位移函数为:代入(4-33)式,并令可得与两端简支时相同的方程式(4-40),求解之,其最小根为所求的临界力。也可采用迦辽金法,里兹法求解微分方程当杆端为固定时,边界条件为:假设位移函数为:代入(4-33)41三关于临界荷载的讨论-以两端简支的轴压杆为例(一)当杆件截面为双轴对称或点对称时截面形心与剪力中心重合,x0=y0=0,(4-40)的形式为:方程式的三个根为三关于临界荷载的讨论-以两端简支的轴压杆为例(一)当杆件截42当n=1时,得到最小临界力,将此三根代入(4-39)式,可得当P=Px和P=Py时,杆件为弯曲屈曲,当P=P时,杆件为扭转屈曲。对于双轴对称或点对称截面的轴压杆,只能发生绕其主轴弯曲屈曲或绕剪力中心的扭转屈曲,不会发生弯扭屈曲。当n=1时,得到最小临界力,将此三根代入(4-39)式,可得43(二)当杆件截面为单轴对称(设y轴为对称轴)时,则x0=0,式(4-40)的形式为:弯曲屈曲弯扭屈曲(三)当杆件截面为不对称时,则必为弯扭屈曲,临界力为(4-40)式的三个根中最小值,并取n=1。阅读夏志斌教授《结构稳定理论》P200例5-3取n=1,得到最小临界力。(二)当杆件截面为单轴对称(设y轴为对称轴)时,则x0=0,44第三节偏心受压时开口薄壁杆件的弯扭屈曲除了上节所述的基本假定外,需再假设杆件截面具有足够的抗弯刚度,由偏心弯矩产生的弯曲变形很小,可以略去不计。第三节偏心受压时开口薄壁杆件的弯扭屈曲除了上节所述的基本假45一中性平衡方程的建立(一)根据势能驻值原理来导出中性平衡状态时,截面上任意点B(x,y)的位移、应变能U和外力所作的功W的表达式与上一节(4-25)式、(4-28)式和(4-29)式相同。将(4-27)和(4-45)代入(4-29)式,对整个截面积分,并注意O为形心,x和y轴为形心主轴,可得:式中x和y为不对称截面的几何特性。一中性平衡方程的建立(一)根据势能驻值原理来导出中性平衡状46体系总势能的表达式为:由=0和变分法导可得(4-32)式,将(4-48)式中被积函数代入,可得平衡方程为:体系总势能的表达式为:由=0和变分法导可得(4-32)47或(二)根据假想荷载法导出P204或(二)根据假想荷载法导出P20448二临界荷载的确定杆端为简支时,假设位移函数同(4-37)式,代入(4-50)式,可得线性齐次代数方程为:由(4-51)式可得稳定特征方程为:或:二临界荷载的确定杆端为简支时,假设位移函数同(4-37)式49解这个特征方程可得P的三个根,其最小根就是所求的临界力。当杆端为固定时,可假定位移函数同(4-41)式,代入(4-50)式可得与(4-51)和(4-52)式相同的方程式,但Px、Py
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳务派遣工作双方协议书七篇
- 2023劳务派遣工作协议书七篇
- 鱼鳞病病因介绍
- 中小学结核病防治知识
- 【中职专用】中职对口高考-机电与机制类专业-核心课-模拟试卷2(河南适用)(答案版)
- 重庆2020-2024年中考英语5年真题回-学生版-专题03 短文填空
- 山东省青岛市即墨区2023-2024学年八年级上学期期末英语试题(原卷版)-A4
- 黄金卷04(新课标卷)(新疆、西藏专用)(解析版)-A4
- 2023年新型高效饲料及添加剂项目融资计划书
- 2023年硝酸钾项目筹资方案
- 2025年重庆货运从业资格证考试题及答案详解
- 屋面板的拆除与更换施工方案
- 生命不是游戏拒绝死亡挑战主题班会
- 本地化部署合同
- 2024年云南省中考历史试卷
- 油气管线安全保护方案
- 国家职业技术技能标准 4-07-05-04 消防设施操作员 人社厅发201963号
- 新教科版小学1-6年级科学需做实验目录
- 2024-2030年中国辣椒碱市场占有率调查及经营战略可行性分析研究报告
- 全过程工程咨询项目部管理制度
- 拒绝躺平 停止摆烂-学生心理健康主题班会(课件)
评论
0/150
提交评论