云南省保山市2022-2023学年数学高二下期末达标检测模拟试题含解析_第1页
云南省保山市2022-2023学年数学高二下期末达标检测模拟试题含解析_第2页
云南省保山市2022-2023学年数学高二下期末达标检测模拟试题含解析_第3页
云南省保山市2022-2023学年数学高二下期末达标检测模拟试题含解析_第4页
云南省保山市2022-2023学年数学高二下期末达标检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列函数中,与函数的奇偶性相同,且在上单调性也相同的是()A. B. C. D.2.某工厂生产的零件外直径(单位:)服从正态分布,今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为和,则可认为()A.上午生产情况异常,下午生产情况正常 B.上午生产情况正常,下午生产情况异常C.上、下午生产情况均正常 D.上、下午生产情况均异常3.已知过点且与曲线相切的直线的条数有().A.0 B.1 C.2 D.34.设三次函数的导函数为,函数的图象的一部分如图所示,则正确的是()A.的极大值为,极小值为B.的极大值为,极小值为C.的极大值为,极小值为D.的极大值为,极小值为5.分形几何学是美籍法国数学家伯努瓦••曼德尔布罗特()在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路.下图按照的分形规律生长成一个树形图,则第13行的实心圆点的个数是()A.55个 B.89个 C.144个 D.233个6.用反证法证明:“实数中至少有一个不大于0”时,反设正确的是()A.中有一个大于0 B.都不大于0C.都大于0 D.中有一个不大于07.抛物线的焦点为,点,为抛物线上一点,且不在直线上,则周长的最小值为A. B. C. D.8.命题“∀n∈N*,f(n)∈NA.∀n∈N*B.∀n∈N*C.∃n0D.∃n09.下列有关统计知识的四个命题正确的是()A.衡量两变量之间线性相关关系的相关系数越接近,说明两变量间线性关系越密切B.在回归分析中,可以用卡方来刻画回归的效果,越大,模型的拟合效果越差C.线性回归方程对应的直线至少经过其样本数据点中的一个点D.线性回归方程中,变量每增加一个单位时,变量平均增加个单位10.点A、B在以PC为直径的球O的表面上,且AB⊥BC,AB=2,BC=4,若球O的表面积是24π,则异面直线PB和AC所成角余弦值为()A.33 B.32 C.1011.某煤气站对外输送煤气时,用1至5号五个阀门控制,且必须遵守以下操作规则:①若开启3号,则必须同时开启4号并且关闭2号;②若开启2号或4号,则关闭1号;③禁止同时关闭5号和1号.则阀门的不同开闭方式种数为()A.7 B.8 C.11 D.1412.某程序框图如图所示,则该程序运行后输出的值是()A.0 B.-1 C.-2 D.-8二、填空题:本题共4小题,每小题5分,共20分。13.i是虚数单位,则复数的虚部为______.14.极坐标系中,曲线上的点到直线的距离的最大值是.15.已知函数的导函数为,且对任意的实数都有(是自然对数的底数),且,若关于的不等式的解集中恰有两个整数,则实数的取值范围是_________.16.已知函数,若,则实数的取值范围是___.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列各项均为正数,,,.(1)若,①求的值;②猜想数列的通项公式,并用数学归纳法证明;(2)若,证明:当时,.18.(12分)已知函数.(1)若函数有两个不同的零点,求实数的取值范围;(2)若在上恒成立,求实数的取值范围.19.(12分)在某项体能测试中,规定每名运动员必需参加且最多两次,一旦第一次测试通过则不再参加第二次测试,否则将参加第二次测试.已知甲每次通过的概率为23,乙每次通过的概率为1(Ⅰ)求甲乙至少有一人通过体能测试的概率;(Ⅱ)记X为甲乙两人参加体能测试的次数和,求X的分布列和期望.20.(12分)一只口袋中装有形状、大小都相同的10个小球,其中有红球2个,黑球3个,白球5个.从中1次随机摸出2个球,求2个球颜色相同的概率;从中1次随机摸出3个球,记白球的个数为X,求随机变量X的概率分布和数学期望;每次从袋中随机摸出1个球,记下颜色后放回,连续取3次,求取到红球的次数大于取到白球的次数的概率.21.(12分)已知函数.(1)若,求曲线在处的切线方程;(2)若函数在上的最小值为,求的值.22.(10分)已知矩阵,向量.(1)求的特征值、和特征向量、;(2)求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

先分析的奇偶性以及在的单调性,然后再对每个选项进行分析.【详解】函数为偶函数,且在上为增函数,对于选项,函数为偶函数,在上为増函数,符合要求;对于选项,函数是偶函数,在上为减函数,不符合题意;对于选项,函数为奇函数,不符合题意;对于选项,函数为非奇非偶函数,不符合要求;只有选项符合要求,故选.【点睛】奇偶函数的判断:(满足定义域关于原点对称的情况下)若,则是奇函数;若,则是偶函数.2、B【解析】

根据生产的零件外直径符合正态分布,根据原则,写出零件大多数直径所在的范围,把所得的范围同两个零件的外直径进行比较,得到结论.【详解】因为零件外直径,所以根据原则,在与之外时为异常,因为上、下午生产的零件中随机取出一个,,,所以下午生产的产品异常,上午的正常,故选B.【点睛】该题考查的是有关正态分布的问题,涉及到的知识点有正态分布的原则,属于简单题目.3、C【解析】

设切点为,则,由于直线经过点,可得切线的斜率,再根据导数的几何意义求出曲线在点处的切线斜率,建立关于的方程,从而可求方程.【详解】若直线与曲线切于点,则,又∵,∴,∴,解得,,∴过点与曲线相切的直线方程为或,故选C.【点睛】本题主要考查了利用导数求曲线上过某点切线方程的斜率,求解曲线的切线的方程,其中解答中熟记利用导数的几何意义求解切线的方程是解答的关键,着重考查了运算与求解能力,属于基础题.4、C【解析】

由的图象可以得出在各区间的正负,然后可得在各区间的单调性,进而可得极值.【详解】由图象可知:当和时,,则;当时,,则;当时,,则;当时,,则;当时,,则.所以在上单调递减;在上单调递增;在上单调递减.所以的极小值为,极大值为.故选C.【点睛】本题考查导数与函数单调性的关系,解题的突破点是由已知函数的图象得出的正负性.5、C【解析】分析:一一的列举出每行的实心圆点的个数,观察其规律,猜想:,得出结论即可,选择题我们可以不需要完整的理论证明.详解:行数12345678910111213球数01123581321345589144,由此猜想:,故选C.点睛:观察规律,把行数看成数列的项数,个数看作数列的项,尽可能的多推导前面有限项看出规律.6、C【解析】

根据用反证法证明数学命题的方法和步骤,应先假设命题的否定成立,而要证明题的否定为:“都大于0”,从而得出结论.【详解】解:根据用反证法证明数学命题的方法和步骤,应先假设命题的否定成立,而命题:“实数中至少有一个不大于0”的否定为“都大于0”,故选:.【点睛】本题主要考查用命题的否定,反证法证明数学命题的方法和步骤,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口,属于基础题.7、C【解析】

求△MAF周长的最小值,即求|MA|+|MF|的最小值,设点M在准线上的射影为D,根据抛物线的定义,可知|MF|=|MD|,因此,|MA|+|MF|的最小值,即|MA|+|MD|的最小值.根据平面几何知识,可得当D,M,A三点共线时|MA|+|MD|最小,因此最小值为xA﹣(﹣1)=5+1=6,∵|AF|==5,∴△MAF周长的最小值为11,故答案为:C.8、D【解析】

根据全称命题的否定是特称命题,可知命题“∀n∈N*,fn∈N故选D.考点:命题的否定9、A【解析】分析:利用“卡方”的意义、相关指数的意义及回归分析的适用范围,逐一分析四个答案的真假,可得答案.详解:A.衡量两变量之间线性相关关系的相关系数越接近,说明两变量间线性关系越密切,正确;B.在回归分析中,可以用卡方来刻画回归的效果,越大,模型的拟合效果越差,错误对分类变量与的随机变量的观测值来说,越大,“与有关系”可信程度越大;故B错误;C.线性回归方程对应的直线至少经过其样本数据点中的一个点,错误,回归直线可能不经过其样本数据点中的任何一个点;D.线性回归方程中,变量每增加一个单位时,变量平均增加个单位,错误,由回归方程可知变量每增加一个单位时,变量平均增加个单位.故选A.点睛:本题考查回归分析的意义以及注意的问题.是对回归分析的思想、方法小结.要结合实例进行掌握.10、C【解析】

首先作出图形,计算出球的半径,通过几何图形,找出异面直线PB和AC所成角,通过余弦定理即可得到答案.【详解】设球O的半径为R,则4πR2=24π,故R=6,如图所示:分别取PA,PB,BC的中点M,N,E,连接MN,NE,ME,AE,易知,PA⊥平面ABC,由于AB⊥BC,所以AC=AB2+BC2=25,所以PA=PC2-AC2=2,因为E为BC的中点,则AE=AB2+BE2=2cos∠MNE=MN2+NE2-M【点睛】本题主要考查外接球的相关计算,异面直线所成角的计算.意在考查学生的空间想象能力,计算能力和转化能力,难度较大.11、A【解析】

分两类解决,第一类:若开启3号,然后对2号和4号开启其中一个即可判断出1号和5号情况,第二类:若关闭3号,关闭2号关闭4号,对1号进行讨论,即可判断5号,由此可计算出结果.【详解】解:依题意,第一类:若开启3号,则开启4号并且关闭2号,此时关闭1号,开启5号,此时有1种方法;第二类:若关闭3号,①开启2号关闭4号或关闭2号开启4号或开启2号开启4号时,则关闭1号,开启5号,此时有种3方法;②关闭2号关闭4号,则开启1号关闭5号或开启1号开启5号或关闭1号,开启5号,此时有种3方法;综上所述,共有种方式.故选:A.【点睛】本题考查分类加法计数原理,属于中档题.12、B【解析】根据流程图可得:第1次循环:;第2次循环:;第3次循环:;第4次循环:;此时程序跳出循环,输出.本题选择B选项.二、填空题:本题共4小题,每小题5分,共20分。13、-1【解析】

分子分母同时乘以,进行分母实数化.【详解】,其虚部为-1【点睛】分母实数化是分子分母同时乘以分母的共轭复数,是一道基础题.14、7【解析】试题分析:由线方程化为:,即,化为:,圆心坐标为(-2,0),半径为r=2,直线方程化为:-8=0,圆心到直线的距离为:=5,所以,最大距离为:5+2=7.考点:1、极坐标方程化为普通方程;2、点到直线的距离.15、【解析】

由得,即.设,由得,从而.判断函数的单调性,数形结合求实数的取值范围.【详解】,即.设.,.由,得;由,得或,函数在上单调递增,在和上单调递减,如图所示当时,.又,且时,,由图象可知,要使不等式的解集中恰有两个整数,需满足,即.所以实数的取值范围为.故答案为:.【点睛】本题考查利用导数求参数的取值范围,考查数形结合的数学思想方法,属于难题.16、【解析】

对的范围分类讨论函数的单调性,再利用可判断函数在上递增,利用函数的单调性将转化成:,解得:,问题得解.【详解】当时,,它在上递增,当时,,它在上递增,又所以在上递增,所以可化为:,解得:.所以实数的取值范围是故填:【点睛】本题主要考查了分类思想及函数单调性的应用,还考查了转化能力及计算能力,属于中档题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)①;;②(2)见证明【解析】

(1)①根据递推公式,代入求值即可;②观察已知的数列的前几项,根据其特征,先猜想其通项公式,之后应用数学归纳法证明即可得结果;(2)应用数学归纳法证明.【详解】(1)当时,即当时,当时,当时,②由此猜想:证明如下:①当时,,成立;②假设当时,猜想也成立,即,则当时,.即当时,猜想也成立.由①②得,猜想成立,即.()(2)当时,即当时,由知不等式成立.假设当时,命题也成立,即.由即当时,命题也成立.由①②得,原命题成立,即当时,.【点睛】该题考查的是数列的有关问题,涉及到的知识点有根据递推公式求数列的特定项,根据已知的数列的前几项猜想数列的通项公式,应用数学归纳法证明问题,属于中档题目.18、(1);(2).【解析】

(1)先对求导,然后分别讨论和时的情况,从而得到的取值范围;(2)可令,再求导,就和两种情况再分别讨论恒成立问题即可得到答案.【详解】(1)①当时,恒成立,故在上递增,最多一个零点,不合题意;②当时,,,在上递增,在上递减,且时,,时,故要有两个零点,只需,解得:,综合①、②可知,的范围是:.(2)令,①当,恒成立,在上递增,,符合题意;②当时,在上递增,在上递增,又,若,即时,恒成立,同①,符合题意,若,即时,存在,使,时,,时,,在递减,在上递增,而,故不满足恒成立,综上所述,的范围是:.【点睛】本题主要考查利用导函数求解零点中含参问题,恒成立中含参问题,意在考查学生的转化能力,对学生的分类讨论的思想要求较高,难度较大.19、(Ⅰ)3536X的分布列为;X234P111EX=2×【解析】

(Ⅰ)先求出甲未能通过体能测试的概率,然后再求出乙未能通过体能测试的概率,这样就能求出甲、乙都未能通过体能测试的概率,根据对立事件的概率公式可以求出甲乙至少有一人通过体能测试的概率;(Ⅱ)由题意可知X=2,3,4,分别求出P(X=2)、【详解】解:(Ⅰ)甲未能通过体能测试的概率为P1乙未能通过体能测试的概率为P2∴甲乙至少有一人通过体能测试的概率为P=1-P(Ⅱ)X=2,3,4P(X=2)=23×12∴X的分布列为X234P111∴EX=2×【点睛】本题考查了相互独立事件的概率、对立事件的概率公式、离散型随机变量的分布列和数学期望,考查了数学运算能力.20、(1);(2)详见解析;(3).【解析】

利用互斥事件的概率求和公式计算即可;由题意知X的可能取值,计算所求的概率值,写出X的概率分布,求出数学期望值;由题意知事件包含一红两黑和两红一黑,两红一白,求出对应的概率值.【详解】解:从袋中1次随机摸出2个球,则2个球颜色相同的概率为;从袋中1次随机摸出3个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论