版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知某同学在高二期末考试中,A和B两道选择题同时答对的概率为,在A题答对的情况下,B题也答对的概率为,则A题答对的概率为()A. B. C. D.2.证明等式时,某学生的证明过程如下(1)当n=1时,,等式成立;(2)假设时,等式成立,即,则当时,,所以当时,等式也成立,故原式成立.那么上述证明()A.过程全都正确 B.当n=1时验证不正确C.归纳假设不正确 D.从到的推理不正确3.中,角A,B,C的对边分别是a,b,c,已知,则A=A. B. C. D.4.复数在复平面上对应的点不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知函数,若恰有两个不同的零点,则的取值范围为()A. B. C. D.6.已知某随机变量服从正态分布,且,则()A. B. C. D.7.已知自然数,则等于()A. B. C. D.8.甲、乙二人进行围棋比赛,采取“三局两胜制”,已知甲每局取胜的概率为,则甲获胜的概率为().A. B.C. D.9.若,则()A.8 B.7 C.6 D.510.已知函数,若函数有个零点,则实数的取值范围为()A. B. C. D.11.已知锐角中,角所对的边分别为,若,则的取值范围是()A. B. C. D.12.已知平面向量,的夹角为,且,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.分别和两条异面直线相交的两条直线的位置关系是___________.14.已知等比数列中,有,,数列前项和为,且则_______.15.在极坐标系中,点到直线的距离为_____.16.面对竞争日益激烈的消费市场,众多商家不断扩大自己的销售市场,以降低生产成本.某白酒酿造企业市场部对该企业9月份的产品销量(单位:千箱)与单位成本(单位:元)的资料进行线性回归分析,得到结果如下:,,,,则销量每增加1千箱,单位成本约下降________元(结果保留5位有效数字).附:回归直线的斜率和截距的最小二乘法公式分别为:,.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知椭圆的离心率是,一个顶点是.(Ⅰ)求椭圆的方程;(Ⅱ)设,是椭圆上异于点的任意两点,且.试问:直线是否恒过一定点?若是,求出该定点的坐标;若不是,说明理由.18.(12分)已知函数.(1)求此函数的单调区间;(2)设.是否存在直线()与函数的图象相切?若存在,请求出的值,若不存在,请说明理由.19.(12分)时下,租车自驾游已经比较流行了.某租车点的收费标准为:不超过天收费元,超过天的部分每天收费元(不足天按天计算).甲、乙两人要到该租车点租车自驾到某景区游览,他们不超过天还车的概率分别为和,天以上且不超过天还车的概率分别为和,两人租车都不会超过天.(1)求甲所付租车费比乙多的概率;(2)设甲、乙两人所付的租车费之和为随机变量,求的分布列和数学期望.20.(12分)假设关于某设备的使用年限(年)和所支出的年平均维修费用(万元)(即维修费用之和除以使用年限),有如下的统计资料:(1)求关于的线性回归方程;(2)估计使用年限为10年时所支出的年平均维修费用是多少?参考公式:21.(12分)学校为了对教师教学水平和教师管理水平进行评价,从该校学生中选出300人进行统计.其中对教师教学水平给出好评的学生人数为总数的,对教师管理水平给出好评的学生人数为总数的,其中对教师教学水平和教师管理水平都给出好评的有120人.(1)填写教师教学水平和教师管理水平评价的列联表:对教师管理水平好评对教师管理水平不满意合计对教师教学水平好评对教师教学水平不满意合计请问是否可以在犯错误概率不超过0.001的前提下,认为教师教学水平好评与教师管理水平好评有关?(2)若将频率视为概率,有4人参与了此次评价,设对教师教学水平和教师管理水平全好评的人数为随机变量.①求对教师教学水平和教师管理水平全好评的人数的分布列(概率用组合数算式表示);②求的数学期望和方差.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(,其中)22.(10分)已知函数,,(1)当时,求函数的最小值.(2)当时,对于两个不相等的实数,,有,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】分析:根据条件概率公式计算即可.详解:设事件A:答对A题,事件B:答对B题,则,..故选:B.点睛:本题考查了条件概率的计算,属于基础题.2、A【解析】分析:由题意结合数学归纳法的证明方法考查所给的证明过程是否存在错误即可.详解:考查所给的证明过程:当时验证是正确的,归纳假设是正确的,从到的推理也是正确的,即证明过程中不存在任何的问题.本题选择A选项.点睛:本题主要考查数学归纳法的概念及其应用,意在考查学生的转化能力和计算求解能力.3、C【解析】试题分析:由余弦定理得:,因为,所以,因为,所以,因为,所以,故选C.【考点】余弦定理【名师点睛】本题主要考查余弦定理的应用、同角三角函数的基本关系,是高考常考知识内容.本题难度较小,解答此类问题,注重边角的相互转换是关键,本题能较好地考查考生分析问题、解决问题的能力及基本计算能力等.4、C【解析】
把复数化为形式,然后确定实部与虚部的取值范围.【详解】,时,,对应点在第二象限;时,,对应点在第四象限;时,,对应点在第一象限.或时,对应点在坐标轴上;∴不可能在第三象限.故选:C.【点睛】本题考查复数的除法运算,考查复数的几何意义.解题时把复数化为形式,就可以确定其对应点的坐标.5、B【解析】分析:求出函数的导数,通过导数判定函数的单调性,从而得到的取值范围详解:令,则,令,在单调增,在单调减的取值范围为故选点睛:本题主要考查的是函数的零点问题,解决问题的关键是导数判断函数的单调性,然后通过数形结合的方法得到关于的范围6、A【解析】
直接利用正态分布曲线的对称性求解.【详解】,且,..故选:A.【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量和的应用,考查曲线的对称性,属于基础题.7、D【解析】分析:直接利用排列数计算公式即可得到答案.详解:.故选:D.点睛:合理利用排列数计算公式是解题的关键.8、C【解析】
先确定事件“甲获胜”包含“甲三局赢两局”和“前两局甲赢”,再利用独立重复试验的概率公式和概率加法公式可求出所求事件的概率.【详解】事件“甲获胜”包含“甲三局赢两局”和“前两局甲赢”,若甲三局赢两局,则第三局必须是甲赢,前面两局甲赢一局,所求概率为,若前两局都是甲赢,所求概率为,因此,甲获胜的概率为,故选C.【点睛】本题考查独立重复事件的概率,考查概率的加法公式,解题时要弄清楚事件所包含的基本情况,考查分类讨论思想,考查计算能力,属于中等题.9、D【解析】
由得,即,然后即可求出答案【详解】因为,所以所以即,即解得故选:D【点睛】本题考查的是排列数和组合数的计算,较简单.10、D【解析】
画出函数的图像,将的零点问题转化为与有个交点问题来解决,画出图像,根据图像确定的取值范围.【详解】当时,,所以,当时,,所以,当时,,所以.令,易知,所以,将函数有个零点问题,转化为函数图像,与直线有个交点来求解.画出的图像如下图所示,由图可知,而,故.故选D.【点睛】本小题主要考查分段函数图像与性质,考查函数零点问题的求解策略,考查化归与转化的数学思想方法,考查数形结合的数学思想方法,属于中档题.11、B【解析】
利用余弦定理化简后可得,再利用正弦定理把边角关系化为角的三角函数的关系式,从而得到,因此,结合的范围可得所求的取值范围.【详解】,因为为锐角三角形,所以,,,故,选B.【点睛】在解三角形中,如果题设条件是关于边的二次形式,我们可以利用余弦定理化简该条件,如果题设条件是关于边的齐次式或是关于内角正弦的齐次式,那么我们可以利用正弦定理化简该条件,如果题设条件是边和角的混合关系式,那么我们也可把这种关系式转化为角的关系式或边的关系式.12、C【解析】分析:根据向量的运算,化简,由向量的数量积定义即可求得模长.详解:平面向量数量积,所以所以选C点睛:本题考查了向量的数量积及其模长的求法,关键是理解向量运算的原理,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、相交或异面【解析】
根据异面直线的定义可知与两条异面直线相交的两条直线不可能平行,可得到位置关系.【详解】如下图所示:此时的位置关系为:相交如下图所示:此时的位置关系为:异面若平行,则与的四个交点,四点共面;此时共面,不符合异面直线的定义综上所述:的位置关系为相交或异面本题正确结果;相交或异面【点睛】本题考查空间中直线的位置关系的判断,属于基础题.14、【解析】
首先根据是等比数列得到,根据代入求出的值,再根据求即可.【详解】因为是等比数列,,所以.又因为,所以.因为,,所以.则.当时,,,即:,是以首项,的等比数列.所以.故答案为:【点睛】本题主要考查根据求数列的通项公式,同时考查等比中项的性质,属于中档题.15、【解析】
把点的极坐标化为直角坐标,把直线的极坐标方程化为直角坐标方程,利用点到直线的距离公式求出A到直线的距离.【详解】解:点A(2,)的直角坐标为(0,2),直线ρ(cosθ+sinθ)=6的直角坐标方程为x+y﹣6=0,利用点到直线的距离公式可得,点A(2,)到直线ρ(cosθ+sinθ)=6的距离为,故答案为.【点睛】本题主要考查把极坐标方程化为直角坐标方程的方法,点到直线的距离公式的应用,属于基础题.16、1.8182【解析】
根据所给的数据和公式可以求出回归直线方程,根据回归直线斜率的意义可以求出销量每增加1千箱,单位成本约下降多少元.【详解】由所给的数据和公式可求得:,,所以线性回归方程为:,所以销量每增加1千箱,单位成本约下降元.故答案为:1.8182【点睛】本题考查了求线性回归方程,考查了直线斜率的意义,考查了数学运算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)直线恒过定点【解析】试题分析:(Ⅰ)设椭圆C的半焦距为c.求出b利用离心率求出a,即可求解椭圆C的方程;(Ⅱ)证法一:直线PQ的斜率存在,设其方程为y=kx+m.将直线PQ的方程代入消去y,设P,Q,利用韦达定理,通过BP⊥BQ,化简求出,求出m,即可得到直线PQ恒过的定点.证法二:直线BP,BQ的斜率均存在,设直线BP的方程为y=kx+1,将直线BP的方程代入,消去y,解得x,设P,转化求出P的坐标,求出Q坐标,求出直线PQ的方程利用直线系方程求出定点坐标试题解析:(Ⅰ)解:设椭圆的半焦距为.依题意,得,且,解得.所以,椭圆的方程是.(Ⅱ)证法一:易知,直线的斜率存在,设其方程为.将直线的方程代入,消去,整理得.设,,则,.(1)因为,且直线的斜率均存在,所以,整理得.(2)因为,,所以,.(3)将(3)代入(2),整理得.(4)将(1)代入(4),整理得.解得,或(舍去).所以,直线恒过定点.证法二:直线的斜率均存在,设直线的方程为.将直线的方程代入,消去,得解得,或.设,所以,,所以.以替换点坐标中的,可得.从而,直线的方程是.依题意,若直线过定点,则定点必定在轴上.在上述方程中,令,解得.所以,直线恒过定点.考点:圆锥曲线的定值问题;椭圆的标准方程18、(1)单调递增区间是,单调递减区间是和(2)存在,的值是.【解析】
(1)求导数,利用导数的正负,即可求此函数的单调区间;(2)假设存直线与函数的图象相切于点,则这条直线可以写成,与直线比较,即可得出结论.【详解】解:(1)∵,∴.令,得,解之,得;令,得,解之,得,或.∴函数的单调递增区间是,单调递减区间是和.(2)∵,,∴.∴.假设存直线与函数的图象相切于点(),则这条直线可以写成.∵,,∴.即.∴解之,得所以存在直线与函数的图象相切,的值是.【点睛】本题考查导数知识的综合运用,考查函数的单调性,考查导数的几何意义,考查学生分析解决问题的能力,属于中档题.19、(1);(2)见解析【解析】
(1)将情况分为甲租天以上,乙租不超过天;甲租天,乙租天两种情况;分别在两种情况下利用独立事件概率公式可求得对应概率,加和得到结果;(2)首先确定所有可能的取值,再求得每个取值所对应的概率,从而得到分布列;利用数学期望计算公式求得期望.【详解】(1)若甲所付租车费比乙多,则分为:甲租天以上,乙租不超过天;甲租天,乙租天两种情况①甲租天以上,乙租不超过天的概率为:②甲租天,乙租天的概率为:甲所付租车费比乙多的概率为:(2)甲、乙两人所付的租车费之和所有可能的取值为:则;;;;的分布列为:数学期望【点睛】本题考查独立事件概率的求解、离散型随机变量的分布列与数学期望的求解,涉及到和事件、积事件概率的求解,考查学生的运算和求解能力,属于常考题型.20、(1);(2)万元【解析】
(1)先求出样本中心点及代入公式求得,再将代入回归直线求得的值,可得线性回归方程;(2)在(1)中求得的线性回归方程中,取x=10,求得y值得答案.【详解】(1)由题表数据可得,由公式可得,即回归方程是.(2)由(1)可得,当时,;即,使用年限为10年时所支出的年平均维修费用是万元.【点睛】本题考查线性回归方程,考查计算能力,是基础题.21、(1)可以在犯错误概率不超过0.001的前提下,认为教师教学水平好评与教师管理水平好评有关.(2)①见解析②,【解析】分析:(1)由题意得到列联表,根据列联表求得的值后,再根据临界值表可得结
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年南通客运资格证考试题目
- 吉首大学《家具设计》2021-2022学年第一学期期末试卷
- 吉首大学《插画设计B》2021-2022学年第一学期期末试卷
- 吉林艺术学院《艺术概论》2021-2022学年第一学期期末试卷
- 吉林艺术学院《曲式基础》2021-2022学年第一学期期末试卷
- 吉林艺术学院《行草临摹与创作》2021-2022学年第一学期期末试卷
- 吉林艺术学院《CG美宣图创作实践》2021-2022学年第一学期期末试卷
- 2024年大众帕萨特购买协议书模板
- 引进外劳协议书范文模板范文
- 吉林艺术学院《节奏训练II》2021-2022学年第一学期期末试卷
- 技术通知单(新模版-0516)
- 小学男女生如何正常交往主题班会课件
- 必修二2.1充分发挥市场在资源配置中起决定性作用课件
- 英语听力技巧与应用(山东联盟)智慧树知到课后章节答案2023年下滨州学院
- 小学三年级语文期中考试总结反思
- 高级政工师职称面试题
- 2022年HJ1237机动车环检作业指导书
- 大唐之美通用模板
- LED屏施工方案(技术方案)
- 项目收费站机电工程(三大系统)设备基本培训资料
- ABS装置湿法挤出机系统存在的问题研究及对策的中期报告
评论
0/150
提交评论