




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年安徽省宣城市太元中学高二数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.“函数f(x)在x0处取得极值”是“f′(x0)=0“的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既非充分又非必要条件参考答案:A【考点】函数在某点取得极值的条件;必要条件、充分条件与充要条件的判断.【分析】根据极值的定义可知,前者是后者的充分条件若“f′(x0)=0”,还应在导数为0的左右附近改变符号时,“函数f(x)在x0处取得极值”.故可判断.【解答】解:若“函数f(x)在x0处取得极值”,根据极值的定义可知“f′(x0)=0”成立,反之,“f′(x0)=0”,还应在导数为0的左右附近改变符号时,“函数f(x)在x0处取得极值”.故选A.2.已知方程|lnx|=kx+1在(0,e3)上有三个不等实根,则实数k的取值范围是()A. B. C. D.参考答案:C【考点】54:根的存在性及根的个数判断.【分析】y=kx+1与y=|lnx|的图象在(0,1)一定有一个交点,依题意只需f(x)=kx+1,g(x)=lnx在(1,e3)上有2个交点即可.作f(x)=kx+1与g(x)=lnx的图象,利用数形结合的思想求解即可【解答】解:令f(x)=kx+1,g(x)=lnx,∵y=kx+1与y=|lnx|的图象在(0,1)一定有一个交点,依题意只需f(x)=kx+1,g(x)=lnx在(1,e3)上有2个交点即可.作f(x)=kx+1与g(x)=lnx的图象如下
设直线f(x)=kx+1与g(x)=lnx相切于点(a,b);则?k=e﹣2且对数函数g(x)=lnx的增长速度越来越慢,直线f(x)=kx+1过定点(0,1)方程|lnx|=kx+1中取x=e3得k=2e﹣3,∴则实数k的取值范围是2e﹣3<k<e﹣2.故选:C3.如果执行下面的程序框图,输出的,则判断框中为
(
)A.
B.
C. D.
参考答案:C4.已知函数为偶函数,则在(—5,—2)上是(
)A.增函数
B.减函数
C.非单调函数
D.可能是增函数,也可能是减函数参考答案:A5.数列{cn}为等比数列,其中c1=2,c8=4,f(x)=x(x﹣c1)(x﹣c2)…(x﹣c8),f′(x)为函数f(x)的导函数,则f′(0)=(
) A.0 B.26 C.29 D.212参考答案:D考点:导数的运算.专题:导数的概念及应用;等差数列与等比数列.分析:由已知求出数列{cn}的通项公式,对函数f(x)求导,求出f′(x),令x=0求值.解答: 解:因为数列{cn}为等比数列,其中c1=2,c8=4,所以公比q=,由f(x)=x(x﹣c1)(x﹣c2)…(x﹣c8),得f′(x)=(x﹣c1)(x﹣c2)…(x﹣c8)+x[(x﹣c1)(x﹣c2)…(x﹣c8)]',所以f′(0)=(﹣c1)(﹣c2)…(﹣c8)=c1c2…c8==212;故选D.点评:本题考查了等比数列的通项求法以及导数的运算;解答本题求出等比数列的通项公式以及函数的导数是关键.6.动点P到点M(1,0)与点N(3,0)的距离之差为2,则点P的轨迹是()A.双曲线 B.双曲线的一支 C.两条射线 D.一条射线参考答案:D【考点】轨迹方程.【分析】根据双曲线的定义:动点到两定点的距离的差的绝对值为小于两定点距离的常数时为双曲线;距离当等于两定点距离时为两条射线;距离当大于两定点的距离时无轨迹.【解答】解:|PM|﹣|PN|=2=|MN|,点P的轨迹为一条射线故选D.【点评】本题考查双曲线的定义中的条件:小于两定点间的距离时为双曲线.7.椭圆的左、右焦点分别为F1,F2,P是C上的点,,,则C的离心率为(
)A.
B.
C.
D.参考答案:D因为,,所以,选D.
8.的边上的高线为,,,且,将沿折成大小为的二面角,若,则此时是(
)A.锐角三角形
B.钝角三角形
C.直角三角形
D.形状与,的值有关的三角形参考答案:C略9.等比数列{an}中,a2+a4=20,a3+a5=40,则a6=()A.16 B.32 C.64 D.128参考答案:C【考点】等比数列的通项公式.【分析】由等比数列通项公式列出方程组,求出首项和公差,由此能求出a6.【解答】解:∵等比数列{an}中,a2+a4=20,a3+a5=40,∴,解得a=2,q=2,∴a6=2×25=64.故选:C.10.如果复数,则()A.|z|=2
B.z的实部为1C.z的虚部为﹣1
D.z的共轭复数为﹣1﹣i参考答案:D【分析】直接由复数代数形式的乘除运算化简复数,求出z,然后求出z的模,z的实部,z的虚部,z的共轭复数得答案.【解答】解:∵=,∴z=﹣1+i.则,z的实部为:﹣1,z的虚部为:1,z的共轭复数为:﹣1﹣i.故选:D.二、填空题:本大题共7小题,每小题4分,共28分11.如果实数x,y满足等式(x﹣2)2+y2=3,那么的最大值是.参考答案:【考点】直线与圆的位置关系.【分析】设,的最大值就等于连接原点和圆上的点的直线中斜率的最大值,由数形结合法的方式,易得答案.【解答】解:设,则y=kx表示经过原点的直线,k为直线的斜率.所以求的最大值就等价于求同时经过原点和圆上的点的直线中斜率的最大值.从图中可知,斜率取最大值时对应的直线斜率为正且与圆相切,此时的斜率就是其倾斜角∠EOC的正切值.易得,可由勾股定理求得|OE|=1,于是可得到,即为的最大值.故答案为:12.中国乒乓球队甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为,乙夺得冠军的概率为,那么中国队夺得女子乒乓球单打冠军的概率为
.参考答案:13.如果任意实数x均使arctan≥–a成立,则a的取值范围是
。参考答案:a≥014.函数在点处的切线方程为
;参考答案:略15.若某几何体的三视图(单位:)如图所示,则此几何体的体积是
▲
;参考答案:18略16.已知p:﹣x2+7x+8≥0,q:x2﹣2x+1﹣4m2≤0(m>0).若“非p”是“非q”的充分不必要条件,则实数m的取值范围为.参考答案:(0,1]【考点】必要条件、充分条件与充要条件的判断.【分析】非p”是“非q”的充分不必要条件,得到q是p的充分不必要条件,得到关于m的不等式组,解得即可.【解答】解:p:﹣x2+7x+8≥0,即x2﹣7x﹣8≤0,解得﹣1≤x≤8,q:x2﹣2x+1﹣4m2≤0,得到1﹣2m≤x≤1+2m∵“非p”是“非q”的充分不必要条件,∴q是p的充分不必要条件,∴,∴0<m≤1.故答案为:(0,1].【点评】本题考查充分条件、必要条件和充要条件,解题时要认真审题,仔细解答,注意不等式组的合理运用.17.过点(2,-3),在两坐标轴上的截距互为相反数的直线方程为_____.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(10分)已知圆C:(1)若不过原点的直线与圆C相切,且在轴,轴上的截距相等,求直线的方程;(2)从圆C外一点向圆引一条切线,切点为为坐标原点,且有,求点P的轨迹方程.参考答案:(1)设所求直线的方程为…………(1分)
由圆心到直线的距离等于半径得…………(3分)即直线的方程为………………(1分)
(2)……(3分)
即…(2分)19.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直l的参数方程是(t是参数)(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A、B两点,且|AB|=,求直线的倾斜角α的值.参考答案:【考点】参数方程化成普通方程.【分析】本题(1)可以利用极坐标与直角坐标互化的化式,求出曲线C的直角坐标方程;(2)先将直l的参数方程是(t是参数)化成普通方程,再求出弦心距,利用勾股定理求出弦长,也可以直接利用直线的参数方程和圆的普通方程联解,求出对应的参数t1,t2的关系式,利用|AB|=|t1﹣t2|,得到α的三角方程,解方程得到α的值,要注意角α范围.【解答】解:(1)∵ρcosθ=x,ρsinθ=y,ρ2=x2+y2,∴曲线C的极坐标方程是ρ=4cosθ可化为:ρ2=4ρcosθ,∴x2+y2=4x,∴(x﹣2)2+y2=4.(2)将代入圆的方程(x﹣2)2+y2=4得:(tcosα﹣1)2+(tsinα)2=4,化简得t2﹣2tcosα﹣3=0.设A、B两点对应的参数分别为t1、t2,则,∴|AB|=|t1﹣t2|==,∵|AB|=,∴=.∴cos.∵α∈[0,π),∴或.∴直线的倾斜角或.20.命题p:“方程x2+kx+=0没有实数根”(k∈R);命题q:y=log2(kx2+kx+1)定义域为R,若命题p∨q为真命题,p∧q为假命题,求实数k的取值范围.参考答案:【考点】命题的真假判断与应用.【分析】直接求出p,q两个命题成立时的k的范围,然后利用p∨q为真命题,p∧q为假命题,得到命题p,q一个为真,一个为假.即可求解结果.【解答】(本小题满分12分)解:p:由(k﹣3)(k+3)<0得:﹣3<k<3…,q:令t=kx2+kx+1,由t>0对x∈R恒成立.…(1)当k=0时,1>0,∴k=0符合题意.…(2)当k≠0时,,由△=k2﹣4×k×1<0得k(k﹣4)<0,解得:0<k<4…综上得:q:0≤k<4.…因为p∨q为真命题,p∧q为假命题,所以命题p,q一个为真,一个为假.…∴或…∴﹣3<k<0或3≤k<4…说明:k=0没讨论其它将错就错对的扣21.(本小题满分12分)有20件产品,其中5件是次品,其余都是合格品,现不放回的从中依次抽2件.求:⑴第一次抽到次品的概率;⑵第一次和第二次都抽到次品的概率;⑶在第一次抽到次品的条件下,第二次抽到次品的概率.参考答案:解:设第一次抽到次品为事件A,第二次都抽到次品为事件B.⑴第一次抽到次品的概率
…………4分
⑵
…………8分⑶在第一次抽到次品的条件下,第二次抽到次品的概率为…12分略22.已知函数.(1)讨论函数f(x)的单调性;(2)当时,求a的取值范围.参考答案:(1)见解析;(2)【分析】(1)对求导并因式分解,对分成四种情况,讨论函数的单调性.(2)先将函数解析式转化为,当时,,符合题意.当时,由分离常数得到,构造函数,利用导数求得的值域,由此求得的取值范围.【详解】解:(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/ZHCA 014-2022化妆品抗皱功效评价斑马鱼幼鱼尾鳍皱缩抑制率法
- 2025西藏大学辅导员考试试题及答案
- 2025濮阳石油化工职业技术学院辅导员考试试题及答案
- 2025蚌埠工商学院辅导员考试试题及答案
- 休克急救的护理
- 讲究卫生提升自我
- 设计性心理学核心概念解析
- 神经免疫疾病基础与诊疗进展
- 产品设计毕设指导
- 文化产业发展与管理2025年考试试卷及答案
- 民办学校档案管理制度
- 工业固体废弃物的资源化处理
- DB11 637-2015 房屋结构综合安全性鉴定标准
- 教学评一体化含义
- 24秋国家开放大学《马克思主义基本原理》专题测试参考答案
- 下月监理工作计划模板
- 科技查新报告样例
- 2024株洲市中考地理试题
- 压力管道分部工程竣工报告
- 2024年公选处级领导干部面试题选及参考答案
- 针灸治疗学理论考核试题题库及答案
评论
0/150
提交评论