湖南省永州市耀祥中学高三数学理联考试题含解析_第1页
湖南省永州市耀祥中学高三数学理联考试题含解析_第2页
湖南省永州市耀祥中学高三数学理联考试题含解析_第3页
湖南省永州市耀祥中学高三数学理联考试题含解析_第4页
湖南省永州市耀祥中学高三数学理联考试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省永州市耀祥中学高三数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知双曲线与抛物线有一个公共的焦点F,且两曲线的一个交点为P,若|PF|=5,则双曲线的渐近线方程为(

)A.B.C.D.参考答案:B考点:双曲线试题解析:因为,所以,渐近线方程为

故答案为:B2.如果f'(x)是二次函数,且f'(x)的图像开口向上,顶点坐标为(1,-),那么曲线y=f(x)上任一点的切线的倾斜角的取值范围是(

)A.(0,]B.[0,)∪[,)C.[0,]∪[,)D.[,]参考答案:B3.已知函数,若,则的最小值为(

) A.12 B.9 C.8 D.6参考答案:A略4.已知,若点P是抛物线上任意一点,点Q是圆上任意一点,则的最小值为(

)A. B. C. D.参考答案:A【分析】设点,要使的值最小,则的值要最大,即点到圆心的距离加上圆的半径为的最大值,然后表示出关于的方程,利用基本不等式即可求出的最小值。【详解】设点,由于点是抛物线上任意一点,则,点,则,由于点是圆上任意一点,所以要使的值最小,则的值要最大,即点到圆心的距离加上圆的半径为的最大值,则,,,经检验满足条件,的最小值为,故答案选A。【点睛】本题考查圆与抛物线的综合应用,以及基本不等式求最值问题,属于中档题。5.若某三棱柱截去一个三棱锥后所剩几何体的三视图如图所示,则所截去的三棱锥的外接球的表面积等于()A.34π B.32π C.17π D.参考答案:A【分析】根据三视图还原原图,进而得到切掉的三棱锥的形状,三棱锥上底面外接圆半径圆心设为M半径为r,球心到底面距离为设球心为O,根据勾股定理列出方程即可.【详解】由三视图知几何体是底面为边长为3,4,5的三角形,高为5的三棱柱被平面截得的,如图所示,截去的是一个三棱锥,底面是边长为3,4,5的直角三角形,高为3,的棱锥,如图蓝色线条的图像是该棱锥,三棱锥上底面外接圆半径圆心设为M半径为r,球心到底面距离为设球心为O,由勾股定理得到故选A.【点睛】这个题目考查的是三视图和球的问题相结合的题目,涉及到三视图的还原,外接球的体积或者表面积公式。一般三试图还原的问题,可以放到特殊的正方体或者长方体中找原图。找外接球的球心,常见方法有:提圆心;建系,直角三角形共斜边则求心在斜边的中点上。6.记等差数列的前n项和为,若则该数列的公差d=(

A.7

B.6

C.3

D.2参考答案:D7.不等式>0的解集是

A.(-2,1)(2,+)

B.(2,+)

C.(-2,1)

D.(-,-2)(1,+)

参考答案:A略8.函数的图象的大致形状是()参考答案:C9.若表示直线,表示平面,且,则“”是“”的

)A.充分而不必要条件

B.必要而不充分条件C.充分必要条件

D.既不充分也不必要条件参考答案:D10.已知函数(,,)的部分图象如图所示,考察下列说法:①的图象关于直线对称;②的图象关于点对称;③若关于的方程在上有两个不相等的实数根,则实数m的取值范围为;④将函数的图象向右平移个单位可得到函数的图象.其中正确的个数是(

)A.0

B.1

C.2

D.3参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为,则n=________.参考答案:12.设Sn为数列{an}的前n项和,已知a1=2,对任意p、q∈N*,都有ap+q=ap+aq,则f(n)=(n∈N*)的最小值为

.参考答案:

【考点】数列的求和.【分析】对任意p、q∈N*,都有ap+q=ap+aq,令p=n,q=1,可得an+1=an+a1,则﹣an=2,利用等差数列的求和公式可得Sn.f(n)===n+1+﹣1,令g(x)=x+(x≥1),利用导数研究函数的单调性极值与最值即可得出.【解答】解:∵对任意p、q∈N*,都有ap+q=ap+aq,令p=n,q=1,可得an+1=an+a1,则﹣an=2,∴数列{an}是等差数列,公差为2.∴Sn=2n+=n+n2.则f(n)===n+1+﹣1,令g(x)=x+(x≥1),则g′(x)=1﹣=,可得x∈[1,时,函数g(x)单调递减;x∈时,函数g(x)单调递增.又f(7)=14+,f(8)=14+.∴f(7)<f(8).∴f(n)=(n∈N*)的最小值为.故答案为:.13.等差数列{an}的前项的和为Sn,若,则

_.参考答案:614.设f(x)是定义在R上的奇函数,其图象关于直线x=1对称,且当0<x≤1时,f(x)=log3x.记f(x)在[﹣10,10]上零点的个数为m,方程f(x)=﹣1在[﹣10,10]上的实数根和为n,则有()A.m=20,n=10 B.m=10,n=20 C.m=21,n=10 D.m=11,n=21参考答案:C【考点】函数与方程的综合运用.【分析】利用函数的对称性,函数的奇偶性求解函数的周期,画出函数的图象,然后求解函数的零点个数.【解答】解:∵函数y=f(x)的图象关于直线x=1对称,∴f(2﹣x)=f(x),又y=f(x)为奇函数,∴f(x+2)=f(﹣x)=﹣f(x),∴f(x+4)=﹣f(x+2)=f(x),即f(x)的周期为4,又定义在R上的奇函数,故f(0)=0,当0<x≤1时,f(x)=log3x.可得x=1,f(1)=0,f(x)在[﹣10,10]上图象如图:可得m=21,方程f(x)=﹣1在[﹣10,10]上的实数根分别关于x=﹣7;﹣3,1,5,9对称,实数根的和为n,n=﹣14﹣6+2+10+18=10.故选:C.【点评】本题考查函数与方程的综合应用,函数的图象与零点的个数问题,考查数形结合思想以及转化思想的应用.15.已知函数y=f(x)是R上的偶函数,对于任意x∈R,都有f(x+6)=f(x)+f(3)成立,当x1,x2∈[0,3],且x1≠x2时,都有.给出下列命题:①f(3)=0;②直线x=﹣6是函数y=f(x)的图象的一条对称轴;③函数y=f(x)在[﹣9,﹣6]上为增函数;④函数y=f(x)在[﹣9,9]上有四个零点.其中所有正确命题的序号为(把所有正确命题的序号都填上)参考答案:①②④【考点】函数的零点;函数单调性的判断与证明;函数的周期性;对称图形.【分析】(1)、赋值x=﹣3,又因为f(x)是R上的偶函数,f(3)=0.(2)、f(x)是R上的偶函数,所以f(x+6)=f(﹣x),又因为f(x+6)=f(x),得周期为6,从而f(﹣6﹣x)=f(﹣6+x),所以直线x=﹣6是函数y=f(x)的图象的一条对称轴(3)、有单调性定义知函数y=f(x)在[0,3]上为增函数,f(x)的周期为6,所以函数y=f(x)在[﹣9,﹣6]上为减函数.(4)、f(3)=0,f(x)的周期为6,所以:f(﹣9)=f(﹣3)=f(3)=f(9)=0.【解答】解:①:对于任意x∈R,都有f(x+6)=f(x)+f(3)成立,令x=﹣3,则f(﹣3+6)=f(﹣3)+f(3),又因为f(x)是R上的偶函数,所以f(3)=0.②:由(1)知f(x+6)=f(x),所以f(x)的周期为6,又因为f(x)是R上的偶函数,所以f(x+6)=f(﹣x),而f(x)的周期为6,所以f(x+6)=f(﹣6+x),f(﹣x)=f(﹣x﹣6),所以:f(﹣6﹣x)=f(﹣6+x),所以直线x=﹣6是函数y=f(x)的图象的一条对称轴.③:当x1,x2∈[0,3],且x1≠x2时,都有所以函数y=f(x)在[0,3]上为增函数,因为f(x)是R上的偶函数,所以函数y=f(x)在[﹣3,0]上为减函数而f(x)的周期为6,所以函数y=f(x)在[﹣9,﹣6]上为减函数.④:f(3)=0,f(x)的周期为6,所以:f(﹣9)=f(﹣3)=f(3)=f(9)=0函数y=f(x)在[﹣9,9]上有四个零点.故答案为:①②④.16.若函数f(x)=|2sinx+a|的最小正周期为π,则实数a的值为

.参考答案:017.如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,则线段AE的长为

.参考答案:4考点:与圆有关的比例线段.专题:计算题.分析:连接OC,BE,由圆角定定理,我们可得BE⊥AE,直线l是过C的切线,故OC⊥直线l,△OBC为等边三角形,结合等边三角形的性质及30°所对的直角边等于斜边的一半,我们易求出线段AE的长.解答: 解:连接OC,BE,如下图所示:则∵圆O的直径AB=8,BC=4,∴△OBC为等边三角形,∠COB=60°又∵直线l是过C的切线,故OC⊥直线l又∵AD⊥直线l∴AD∥OC故在Rt△ABE中∠A=∠COB=60°∴AE=AB=4故答案为:4点评:本题考查的知识点是切线的性质,圆周角定理,其中根据切线的性质,圆周角定理,判断出△ABE是一个∠B=30°的直角三角形是解答本题的关键.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.选修4-5:不等式选讲设.(1)求不等式的解集S;(2)若关于x不等式有解,求参数t的取值范围.参考答案:略19.(本小题满分12分)直棱柱中,底面是直角梯形,,.(Ⅰ)求证:⊥平面;(Ⅱ)在上是否存一点,使得与平面与平面都平行?证明你的结论.参考答案:证明:(Ⅰ)直棱柱中,BB1⊥平面ABCD,BB1⊥AC.…2分又∠BAD=∠ADC=90°,,∴,∠CAB=45°,∴,

BC⊥AC.

…4分又,平面BB1C1C,

AC⊥平面BB1C1C.

……6分(Ⅱ)存在点P,P为A1B1的中点.

………………7分证明:由P为A1B1的中点,有PB1‖AB,且PB1=AB.……8分又∵DC‖AB,DC=AB,DC∥PB1,且DC=PB1,∴DCB1P为平行四边形,从而CB1∥DP.

………………10分又CB1面ACB1,DP面ACB1,DP‖面ACB1.

……11分同理,DP‖面BCB1.

…………12分略20.(本小题满分12分)

已知函数R,是函数的一个零点.

(1)求的值,并求函数的单调递增区间;

(2)若,且,,求的值.参考答案:(1)解:∵是函数的一个零点,

∴.

…………1分

∴.

………………2分

………………3分

.

………………4分

由,Z,

得,Z,………………5分

∴函数的单调递增区间是Z.…6分

(2)解:∵,

∴.

∴.

………………7分

∵,

∴.

………………8分

∵,

∴.

∴.

………………9分

∵,

∴.

……………10分

∴…………11分

.

………………12分21.已知椭圆的右顶点、上顶点分别为坐标原点到直线的距离为且(1)求椭圆的方程;(2)过椭圆的左焦点的直线交椭圆于两点,且该椭圆上存在点,使得四边形图形上的字母按此顺序排列)恰好为平行四边形,求直线的方程.参考答案:(1)直线的方程为坐标原点到直线的距离为又解得故椭圆的方程为(2)由(1)可求得椭圆的左焦点为易知直线的斜率不为0,故可设直线点因为四边形为平行四边形,所以联立,因为点在椭圆上,所以那么直线的方程为22.如图所示的多面体中,正方形BB1C1C所在平面垂直平面ABC,△ABC是斜边的等腰直角三角形,B1A1∥BA,.(1)求证:C1A1⊥平面ABB1A1;(2)求直线BC1与平面AA1C1所成的角的正弦值.参考答案:考点:直线与平面所成的角;直线与平面垂直的判定.专题:综合题.分析:解法1:(1)证明C1A1⊥平面ABB1A1,利用线面垂直的判定定理,只需证明A1C1⊥A1O,A1C1⊥AB;(2)作BD⊥直线AA1于D,连接C1D,∠BC1D即为直线BC1与平面AA1C1所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论