2022-2023学年浙江省台州市临海杜桥中学高二数学理月考试题含解析_第1页
2022-2023学年浙江省台州市临海杜桥中学高二数学理月考试题含解析_第2页
2022-2023学年浙江省台州市临海杜桥中学高二数学理月考试题含解析_第3页
2022-2023学年浙江省台州市临海杜桥中学高二数学理月考试题含解析_第4页
2022-2023学年浙江省台州市临海杜桥中学高二数学理月考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年浙江省台州市临海杜桥中学高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在正方体中,点为对角面内一动点,点分别在直线和上自由滑动,直线与所成角的最小值为,则下列结论中正确的是(

)A.若,则点的轨迹为双曲线的一部分

B.若,则点的轨迹为双曲线的一部分

C.若,则点的轨迹为双曲线的一部分

D.若,则点的轨迹为双曲线的一部分参考答案:A由题意结合最小角定理可知,若直线与所成角的最小值为,则原问题等价于:已知圆锥的母线与底面的夹角为,圆锥的顶点为点D,底面与平面平行,求圆锥被平面截得的平面何时为双曲线.由圆锥的特征结合平面与平面所成角的平面角为45°可知:当时截面为双曲线的一部分;当时截面为圆的一部分;当时截面为椭圆的一部分.本题选择A选项.2.

参考答案:B3.高二年级有男生560人,女生420人,为了解学生职业规划,现用分层抽样的方法从该年级全体学生中抽取一个容量为280人的样本,则此样本中男生人数为()A.120 B.160 C.280 D.400参考答案:B【考点】分层抽样方法.【分析】先根据男生和女生的人数做出年纪大总人数,用要抽取得人数除以总人数得到每个个体被抽到的概率,用男生人数乘以概率,得到结果.【解答】解:∵有男生560人,女生420人,∴年级共有560+420=980,∵用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,∴每个个体被抽到的概率是=,∴要从男生中抽取560×=160,故选:B.【点评】本题考查分层抽样方法,本题解题的关键是在抽样过程中每个个体被抽到的概率相等,这是解题的依据,本题是一个基础题.4.执行如图的程序框图,若输入的N值为10,则输出的N值为

A.-1

B.0

C.1

D.2参考答案:D模拟程序的运行,可得N=10满足条件N为偶数,N=5不满足条件N≤2,执行循环体,不满足条件N为偶数,N=2满足条件N≤2,退出循环,输出N的值为2.故选:D.

5.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了()a.10天b.15天

c.19天

d.20天参考答案:C荷叶覆盖水面面积y与生长时间的函数关系为y=2x,当x=20时,长满水面,所以生长19天时,布满水面一半.故选C.6.设,若直线与圆相切,则的取值范围是(

)A. B.C. D.参考答案:D7.设等比数列的前n项和为,满足,.且,则A31

B.36

C42

D48参考答案:A8.以下说法正正确的是(

)①两个随机变量的线性相关性越强,则相关系数r的绝对值就越接近于1②回归直线方程必过点③已知一个回归直线方程为,则变量x每增加一个单位时,平均增加3个单位A.

B.①③

C.

①②

D.②③参考答案:C9.是定义在上的非负、可导函数,且满足,对任意正数,若,则必有

().A.

B.C.

D.参考答案:A10.复数z满足(1+i)z=|﹣i|,则=()A.1+i B.1﹣i C.﹣1﹣i D.﹣1+i参考答案:A【考点】复数求模.【分析】设出z=a+bi,得到关于a,b的方程组,求出z的共轭复数即可.【解答】解:设z=a+bi,则(1+i)z=(1+i)(a+bi)=(a﹣b)+(a+b)i,∴,解得:a=1,b=﹣1,故=1+i,故选:A.二、填空题:本大题共7小题,每小题4分,共28分11.若,则

参考答案:略12.已知复数z=x+yi(x,y∈R)满足条件|z﹣4i|=|z+2|,则2x+4y的最小值是

.参考答案:【考点】7F:基本不等式.【分析】利用复数的运算法则和模的计算公式可得x+2y=3,再利用基本不等式的性质和指数的运算性质即可得出.【解答】解:∵复数z=x+yi(x,y∈R)满足条件|z﹣4i|=|z+2|,∴|x+yi﹣4i|=|x+yi+2|,∴|x+(y﹣4)i|=|x+2+yi|,∴,化为x+2y=3.则2x+4y≥2=2=4,因此2x+4y的最小值是.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式、基本不等式的性质和指数的运算性质,属于中档题.13.已知为圆上的任意一点,若到直线的距离小于的概率为,则=

.参考答案:略14.若双曲线C与双曲线-=1有相同的渐近线,且过点A(3,),则双曲线C的方程为

.参考答案:=1略15.若,则实数的取值范围是

.参考答案:

16.有两排座位,前排11个座位,后排12个座位.现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是

参考答案:346略17.如果,,那么是的

.(在“充分不必要条件”、“必要不充分条件”、“充要条件”、“既不充分也不必要”中选择一个填空)参考答案:充分不必要略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设p:实数x满足x2﹣4ax+3a2<0(a<0),q:实数x满足x2﹣x﹣6≤0或x2+2x﹣8>0,且q是p的必要不充分条件,求a的取值范围.参考答案:【考点】必要条件、充分条件与充要条件的判断.【分析】结合一元二次不等式的解法,利用充分条件和必要条件的定义进行判断.【解答】解:由x2﹣4ax+3a2<0(a<0),得3a<x<a,即p:3a<x<a.由x2﹣x﹣6≤0得﹣2≤x≤3,由x2+2x﹣8>0得x>2或x<﹣4.即q:x≥﹣2或x<﹣4.因为q是p的必要不充分条件,所以a≤﹣4或﹣2≤3a,解得a≤﹣4或a≥﹣,因为a<0,所以a≤﹣4或<0.即a的取值范围a≤﹣4或<0.19.(本小题满分12分)双曲线的离心率为2,坐标原点到直线AB的距离为,其中A,B.

(1)求双曲线的方程;(2)若是双曲线虚轴在轴正半轴上的端点,过作直线与双曲线交于两点,求时,直线的方程.参考答案:(1)由设直线AB的方程为(2)显然直线MN的斜率存在,设为K设直线MN的方程为所以,直线MN的方程为或------6分20.甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的5次预赛成绩记录如下:甲:82

82

79

95

87

乙:95

75

80

90

85(1)用茎叶图表示这两组数据(2)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选哪位学生参加更合适?说明理由(3)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率.参考答案:【考点】列举法计算基本事件数及事件发生的概率;茎叶图.【分析】(1)由已知能作出茎叶图.(2)分别求出平均数和方差,由甲乙的平均数相同,甲的方差小于乙的方差,知派甲参赛比较合理.(3)从甲乙两人的成绩中各随机抽取一个的基本事件个数为5×5=25,列举出甲的成绩比乙的成绩高的个数,由此能求出从甲乙两人的成绩中各随机抽取一个,甲的成绩比乙高的概率.【解答】解:(1)作出茎叶图如下图:(2)派甲参赛比较合理.理由是:=(79+82+82+87+95)=85.=(75+95+80+90+85)=85,=[(82﹣85)2+(82﹣85)2+(79﹣85)2+(95﹣85)2+(87﹣85)2]=31.6,=[(75﹣85)2+(95﹣85)2+(80﹣85)2+(90﹣85)2+(85﹣85)2]=50,为甲乙的平均数相同,甲的方差小于乙的方差,所以甲发挥稳定.故派甲参赛比较合理.(3)设甲被抽到的成绩为x,乙被抽到的成绩为y,则从甲乙两人的成绩中各随机抽取一个的基本事件个数为5×5=25.其中甲的成绩比乙的成绩高的个数为:(82,75),(82,80),(79,75),(87,75),(87,80),(87,85)(95,90),(95,75),(95,80),(95,85),(82,75),(82,80)共12个.所以从甲乙两人的成绩中各随机抽取一个,甲的成绩比乙高的概率为p=.21.在各项为正的数列中,数列的前n项和满足(1)求;(2)由(1)猜想数列的通项公式;(3)求参考答案:22.已知椭圆的中心在坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点F与x轴不垂直的直线l交椭圆于P,Q两点.(1)求椭圆的方程;(2)当直线l的斜率为1时,求△POQ的面积;(3)在线段OF上是否存在点M(m,0),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求出m的取值范围;若不存在,请说明理由.参考答案:【考点】椭圆的标准方程;直线的斜率;直线与圆锥曲线的综合问题.【专题】压轴题.【分析】(1)设椭圆方程为.由两个焦点和短轴的两个端点恰为正方形的顶点,且短轴长为2,由此能够求出a,b,c的值,从而得到所求椭圆方程.(2)右焦点F(1,0),直线l的方程为y=x﹣1.设P(x1,y1),Q(x2,y2),由题设条件得.由此入手可求出.(3)假设在线段OF上存在点M(m,0)(0<m<1),使得以MP,MQ为邻边的平行四边形是菱形.因为直线与x轴不垂直,设直线l的方程为y=k(x﹣1)(k≠0).由题意知(1+2k2)x2﹣4k2x+2k2﹣2=0.由此可知.【解答】解:(1)由已知,椭圆方程可设为.∵两个焦点和短轴的两个端点恰为正方形的顶点,且短轴长为2,∴.所求椭圆方程为.(2)右焦点F(1,0),直线l的方程为y=x﹣1.设P(x1,y1),Q(x2,y2),由得3y2+2y﹣1=0,解得.∴.(3)假设在线段OF上存在点M(m,0)(0<m<1),使得以MP,MQ为邻边的平行四边形是菱形.因为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论