




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年天津长芦中学高三数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数f(x)=2sin(ωx+φ)﹣1(ω>0,|φ|<π)的一个零点是,函数y=f(x)图象的一条对称轴是x=﹣,则ω取得最小值时,函数f(x)的单调区间是()A.[3kπ﹣,3kπ﹣],k∈Z B.[3kπ﹣,3kπ﹣],k∈ZC.[2kπ﹣,2kπ﹣],k∈Z D.[2kπ﹣,2kπ﹣],k∈Z参考答案:B【考点】H2:正弦函数的图象.【分析】根据函数f(x)的一个零点是x=,得出f()=0,再根据直线x=﹣是函数f(x)图象的一条对称轴,得出﹣ω﹣φ=+kπ,k∈Z;由此求出ω的最小值与对应φ的值,写出f(x),求出它的单调增区间即可.【解答】解:函数f(x)=2sin(ωx﹣φ)﹣1的一个零点是x=,∴f()=2sin(ω﹣φ)﹣1=0,∴sin(ω﹣φ)=,∴ω﹣φ=+2kπ或ω﹣φ=π+2kπ,k∈Z;又直线x=﹣是函数f(x)图象的一条对称轴,∴﹣ω﹣φ=+kπ,k∈Z;又ω>0,|φ|<π,∴ω的最小值是,φ=,∴f(x)=2sin(x+)﹣1;令﹣+2kπ≤x+≤+2kπ,k∈Z,∴﹣+3kπ≤x≤﹣+3kπ,k∈Z;∴f(x)的单调增区间是[﹣+3kπ,﹣+3kπ],k∈Z.故选:B.【点评】本题考查了正弦型三角函数的图象与性质的应用问题,是综合性题目.2.已知函数(,)在处取得最大值,则函数是(
)A.偶函数且它的图象关于点对称
B.偶函数且它的图象关于点对称C.奇函数且它的图象关于点对称D.奇函数且它的图象关于点对称参考答案:略3.5名志原者分到3所学校支教,要求每所学校至少有1名志愿者,则不同的分法共有
(A)150种 (B)180种
(C)200种 (D)280参考答案:A4.已知集合,,则(
)A. B. C. D.参考答案:C试题分析:因为,所以,故选C.考点:集合的交集运算.5.已知直线x﹣9y﹣8=0与曲线C:y=x3﹣px2+3x相交于A,B,且曲线C在A,B处的切线平行,则实数p的值为()A.4 B.4或﹣3 C.﹣3或﹣1 D.﹣3参考答案:B【考点】利用导数研究曲线上某点切线方程.【分析】求出原函数的导函数,设出A,B点的坐标,得到函数在A,B点处的导数值,由A,B点处的导数值相等得到3x12﹣2px1+3=3x22﹣2px2+3=m,把x1,x2看作方程3x2﹣2px+3﹣m=0的两个根,利用根与系数关系得到x1+x2=p,进一步得到AB的中点坐标,然后再证明AB的中点在曲线C上,最后由AB中点的纵坐标相等求得实数p的值,注意检验.【解答】解:由y=x3﹣px2+3x,得y′=3x2﹣2px+3,设A(x1,y1),B(x2,y2),则曲线C在A,B处的切线的斜率分别为3x12﹣2px1+3,3x22﹣2px2+3,∵曲线C在A,B处的切线平行,∴3x12﹣2px1+3=3x22﹣2px2+3,令3x12﹣2px1+3=3x22﹣2px2+3=m,∴x1,x2是方程3x2﹣2px+3﹣m=0的两个根,则x1+x2=p,下面证线段AB的中点在曲线C上,∵===p﹣p3,而()3﹣p()2+3?=p3﹣p3+p=p﹣p3,∴线段AB的中点在曲线C上,由x1+x2=p,知线段的中点为(p,(p﹣8)),∴﹣+p=p﹣p3,解得p=﹣1,﹣3或4.当p=﹣1时,y=x3+x2+3x的导数为y′=3x2+2x+3>0恒成立,即函数为递增函数,直线与曲线只有一个交点,舍去;p=﹣3,或4时,y=x3﹣px2+3x不单调,成立.故选:B.6.设复数,则下列各式错误的是
(A)
(B)
(C)
(D)是纯虚数参考答案:C7.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为(
)A.65
B.184
C.183
D.176参考答案:B8.函数的图像大致为 (
).参考答案:A9.圆上的点到直线的距离的最大值是(
)
A.
B.
C.
D.0参考答案:A略10.在射击训练中,某战士射击了两次,设命题是“第一次射击击中目标”,命题是“第二次射击击中目标”,则命题“两次射击中至少有一次没有击中目标”为真命题的充要条件是A.
为真命题 B.
为真命题C.为真命题 D.
为真命题参考答案:A本题主要考查随机事件与对立事件、充分条件与必要条件,考查了逻辑推理能力.“两次射击中至少有一次没有击中目标”与“两次射击都击中目标”是对立事件,“两次射击都击中目标”是,因为题“两次射击中至少有一次没有击中目标”为真命题,所以是假命题,则
为真命题,故答案为A.二、填空题:本大题共7小题,每小题4分,共28分11.已知双曲线中,是左、右顶点,是右焦点,是虚轴的上端点.若在线段上(不含端点)存在不同的两点,使得△构成以为斜边的直角三角形,则双曲线离心率的取值范围是
参考答案:略12.已知直线的参数方程为:,圆C的极坐标方程为,那么,直线l与圆C的位置关系是__________.参考答案:相交解析:直线l的直角坐标方程为,圆C的直角坐标方程为,圆心到直线的距离,直线l与圆C的位置关系是相交.13.已知两个不相等的平面向量,()满足||=2,且与-的夹角为120°,则||的最大值是
.参考答案:略14.已知直线l1:2x﹣2y+1=0,直线l2:x+by﹣3=0,若l1⊥l2,则b=
;若l1∥l2,则两直线间的距离为
.参考答案:1,.【考点】直线的一般式方程与直线的垂直关系.【分析】①由l1⊥l2,则﹣×=﹣1,解得b.②若l1∥l2,则﹣=﹣,解得b.利用平行线之间的距离公式即可得出.【解答】解:①∵l1⊥l2,则﹣×=﹣1,解得b=1.②若l1∥l2,则﹣=﹣,解得b=﹣1.∴两条直线方程分别为:x﹣y+=0,x﹣y﹣3=0.则两直线间的距离==.故答案为:1,.15.(04年全国卷Ⅱ文)已知a为实数,(x+a)10展开式中x7的系数是-15,则a=
参考答案:答案:-
16.已知函数,当变化时,恒成立,则实数的取值范围是___________.参考答案:17.在△ABC中,角A、B、C的对边边长分别是a、b、c,若A=,a=,b=1,则c的值为.参考答案:2【考点】解三角形.【分析】直接利用正弦定理求出B,求出C,然后求解c即可.【解答】解:∵,∴,∴,∵a>b,所以A>B.角A、B、C是△ABC中的内角.∴,∴,∴.故答案为:2.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=lnx﹣kx+1.求:(1)求函数f(x)的单调区间;(2)若f(x)≤0恒成立,试确定实数k的取值范围.参考答案:解答:解:(1)函数f(x)的定义域为(0,+∞),f′(x)=﹣k.当k≤0时,f′(x)=﹣k>0,f(x)在(0,+∞)上是增函数;当k>0时,若x∈(0,)时,有f′(x)>0,若x∈(,+∞)时,有f′(x)<0,则f(x)在(0,)上是增函数,在(,+∞)上是减函数.(2)由(1)知k≤0时,f(x)在(0,+∞)上是增函数,而f(1)=1﹣k>0,f(x)≤0不成立,故k>0,又由(1)知f(x)的最大值为f(),要使f(x)≤0恒成立,则f()≤0即可,即﹣lnk≤0,得k≥1.考点: 利用导数研究函数的单调性;利用导数求闭区间上函数的最值.
专题:导数的综合应用.分析:(1)由函数f(x)的定义域为(0,+∞),而f′(x)=﹣k.能求出函数f(x)的单调区间.(2)由(1)知k≤0时,f(x)在(0,+∞)上是增函数,而f(1)=1﹣k>0,f(x)≤0不成立,故k>0,又由(1)知f(x)的最大值为f(),由此能确定实数k的取值范围.解答:解答:解:(1)函数f(x)的定义域为(0,+∞),f′(x)=﹣k.当k≤0时,f′(x)=﹣k>0,f(x)在(0,+∞)上是增函数;当k>0时,若x∈(0,)时,有f′(x)>0,若x∈(,+∞)时,有f′(x)<0,则f(x)在(0,)上是增函数,在(,+∞)上是减函数.(2)由(1)知k≤0时,f(x)在(0,+∞)上是增函数,而f(1)=1﹣k>0,f(x)≤0不成立,故k>0,又由(1)知f(x)的最大值为f(),要使f(x)≤0恒成立,则f()≤0即可,即﹣lnk≤0,得k≥1.点评:本题考查函数单调区间的求法,确定实数的取值范围,渗透了分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.19.已知a>0,函数f(x)=lnx﹣ax2.(1)求f(x)的单调区间;(2)当时,证明:存在x0∈(2,+∞),使;(3)若存在属于区间[1,3]的α,β,且β﹣α≥1,使f(α)=f(β),证明:.参考答案:【考点】6B:利用导数研究函数的单调性;6E:利用导数求闭区间上函数的最值.【分析】(1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(2)根据函数的单调性得到,从而证明结论;(3)根据函数的单调性得到1≤α≤2≤β≤3,得到关于a的不等式组,解出即可.【解答】解:(1)由题意得函数f(x)=lnx﹣ax2的定义域为,当a≤0时,f'(x)>0,则函数f(x)=lnx﹣ax2在(0,+∞)上单调递增;当a>0时,x>0,由f'(x)>0得,由f'(x)<0得,∴f(x)在上单调递增;在上单调递减,综上所述,结论是a≤0时,函数f(x)=lnx﹣ax2的单调增区间为(0,+∞);a>0时,函数f(x)=lnx﹣ax2的单调增区间为,单调减区间为.(2)证明:当时,函数f(x)在(0,2)上单调递增,在(2,+∞)上单调递减,则,又f(x)在(2,+∞)上的值域为(﹣∞,f(2)),∴存在x0∈(2,+∞),使,综上所述,结论证明成立.(3)证明:f(α)=f(β),由(1)知,又β﹣α≥1,α,β∈[1,3],所以1≤α≤2≤β≤3,所以,即,所以.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及不等式的证明,考查分类讨论思想、转化思想,是一道综合题.20.定义在上的函数同时满足以下条件:①在(0,1)上是减函数,在(1,+∞)上是增函数;②是偶函数;③在x=0处的切线与直线y=x+2垂直.(1)求函数=的解析式;(2)设g(x)=,若存在实数x∈[1,e],使<,求实数m的取值范围..参考答案:略21.(本小题满分12分)设函数f(x)定义在(0,+∞)上,f(1)=0,导函数f′(x)=,g(x)=f(x)+f′(x).(1)求g(x)的单调区间和最小值;(2)讨论g(x)与g()的大小关系;(3)是否存在x0>0,使得|g(x)-g(x0)|<对任意x>0成立?若存在,求出x0的取值范围;若不存在,请说明理由.参考答案:(1)由题知f(x)=lnx,g(x)=lnx+,∴g′(x)=,令g′(x)=0得x=1,当x∈(0,1)时,g′(x)<0,故(0,1)是g(x)的单调减区间,当x∈(1,+∞)时,g′(x)>0,故(1,+∞)是g(x)的单调增区间,因此,x=1是g(x)的唯一极值点,且为极小值点,从而是最小值点,所以最小值为g(1)=1.(2)g()=-lnx+x,设h(x)=g(x)-g()=2lnx-x+,则h′(x)=-,当x=1时,h(1)=0,即g(x)=g(),当x∈(0,1)∪(1,+∞)时,h′(x)<0,h′(1)=0,因此,h(x)在(0,+∞)内单调递减,当0<x<1时,h(x)>h(1)=0,即g(x)>g(),当x>1时,h(x)<h(1)=0,即g(x)<g().(3)满足条件的x0不存在.证明如下:证法一:假设存在x0>0,使得|g(x)-g(x0)|<对任意x>0成立,即对任意x>0,有lnx<g(x0)<lnx+(*),但对上述x0,取x1=eg(x0)时,有lnx1=g(x0),这与(*)左边不等式矛盾,因此,不存在x0>0,使|g(x)-g(x0)|<对任意x>0成立.证法二:假设存在x0>0,使
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 申报中医特色专科汇报
- 艺术教育教师校本培训心得体会
- Unit 1 词汇讲解课件
- 学校装修施工安全文明措施
- 中国全电动压雪车行业市场前景预测及投资价值评估分析报告
- 英语小作文在管理课程中的应用
- 中国户外楼梯升降机行业市场前景预测及投资价值评估分析报告
- 2024年宿迁市宿豫区招聘事业编制教师笔试真题
- 2025年中国液位仪表配套显示仪行业市场前景预测及投资价值评估分析报告
- 2024年辽宁省粮食和物资储备局下属事业单位真题
- 基于AI的管道防腐监测系统研究与应用-洞察阐释
- 酒店宾馆装修合同协议书
- 描绘人间温情-怎样刻画人物 课件-2023-2024学年高中美术人美版(2019)选择性必修1 绘画
- 2025-2030年中国腰果酚行业竞争格局展望及投资前景研究报告
- 2025年天津市高三高考模拟英语试卷试题(含答案详解)
- 职业技术学校中医康复技术专业人才培养方案
- 辽宁省名校联盟2025年高考模拟卷押题卷数学(三)
- 2024年四川巴中事业单位招聘考试真题答案解析
- 以好家风涵养好作风-新时代领导干部家风建设专题课件
- 2025年甘肃省武威第二十中学生物七年级下册新人教版期中模拟练习题(含答案)
- 银行客户经理培训课件
评论
0/150
提交评论