单片机应用-I2C总线_第1页
单片机应用-I2C总线_第2页
单片机应用-I2C总线_第3页
单片机应用-I2C总线_第4页
单片机应用-I2C总线_第5页
已阅读5页,还剩190页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

单片机应用设计项目实训——I2C总线学习内容:

一。总线(I2C总线)。

二。AD、DA转换(PCF8591)。

三。键盘。

四。数码管显示。

五。通信。(232、485)。

六。步进电机驱动控制。

第一篇i2C总线

(理论2学时,实践4学时)

学习目的:

(1).认识i2C总线的实现原理,简单了解其协议思想。

(2).通过i2C总线,认识器件之间,以及电路与软件的融合思想。

(3).通过i2C总线,使学生能触类旁通的扩展到其它协议类的原理。

(4)通过i2C总线,学习单片机控制原理。i2C(Inter-IntegratedCircuit)总线:

它是PHILIPS公司开发的双向两线制串行总线,用于连接微控制器及其外围设备,属于器件总线。i2C总线产生于80年代,最初为音频和视频设备开发,在彩色电视机中大规模应用,如今主要应用于电讯和影音产品,微控制器与各种功能模块的连接,器件之间的互连通信,在计算机服务器的管理中也大量应用。应用实例图一单片机i2C总线应用实例图二一。i2C总线特点

简单性(2线,电路简单,编程方便)

有效性

I2C功能器件包括:实时时钟、LCD驱动、I/O扩展、AD转换器、LED调光、闪光器、LED调光、闪光器、数字温度传感器、数字DIP开关;

i2C总线在IC之间进行双向数据传送,典型速度100Kbit/S,快速模式达400Kbit/S,后来增加了高速模式达3.4Mbit/S。总线的长度可达1000米。

i2C总线上的每个电路和模块都有唯一的地址,像手机拨号一样。每一个IC都可以是主控器(或被控器),都可以是发送器(或接收器)。二。I2C总线的工作原理:

数据传输的实质是:

通过实现数字逻辑的“与”逻辑来传递二进制1和0的数据。“1”高电平;“0”低电平。端口A端口B结果001101010001器件A的端口器件B的端口I2C总线接口的实现电路简图SDAIN=1时,T上拉通,SDA=1;IN=0时,T下拉通,SDA=0。多个并联,即实现了“与”逻辑。0锁定总线,1释放总线。SDASDA

2.1I2C总线的构成及信号类型:

一。构成:

数据线SDA 时钟线SCL二。数据传输的有效规则:

1.SCL高电平期间,SDA保持不变,数据有效。2.SCL低电平期间,SDA改变,数据变化有效。

三。应用方式:

1.标准硬件i2C端口(硬核)。2.软件模拟i2C端口(可编程器件用软件实现)。SDASCL单片机EEPROM普通I/O口普通I/O口单片机EEPROMI2C总线的三种信号类型:

[开始信号]SCL高电平时,SDA产生高到低的下降沿跳变

[结束信号]SCL高电平时,SDA产生低到高的上升沿跳变

[应答信号]接收数据的器件在接收到8bit数据后,向发送数据的器件发出低电平信号,表示已收到数据。这个信号由接收数据的器件发出。发送端收到应答信号后,作出分析判断。若未收到应答信号,则判断为受控单元出现故障。

I2C总线数据传送典型信号时序

串行总线上的数据传送时序图:2.2总线的工作原理时序图时钟线数据线下降沿开始位上降沿结束位数据位应答位时间轴总线数据传送的模拟

(1)总线数据传送的时序要求

为了保证数据传送的可靠性,标准的总线数据传送有着严格的时序要求,如总线上时钟信号的最小低电平周期为4.7us,最小的高电平周期为4us等。

用单片机的普通I/O口模拟总线的数据传送时,单片机的时钟信号都能满足SDA、SCL上升沿、下降沿的时间要求,因此,在时序模拟时,最重要的是保证典型信号。(2)

I2C总线的控制程序实现:/*I2C的启动程序*/

(时钟线高时,数据线上升沿)VoidI2CStart(void) { SDA=1;//释放数据线 SomeNOP();//延时 SCL=1;//时钟线拉高 SomeNOP();//延时 SDA=0;//数据线拉低 SomeNOP();//延时 SCL=0;//时钟线拉低 SomeNOP();//延时}/*I2C的停止程序*/

(时钟线高时,数据线上升沿)voidI2CStop(void){ SDA=0; SomeNOP(); SCL=1; SomeNOP(); SDA=1; SomeNOP();}/*I2C的应答程序*/voidACK(void) //Acknowledge信号{ SDA=0;//发送0,应答 SomeNOP(); SCL=1; SomeNOP();//产生时钟高电平 SCL=0; SomeNOP();}voidNACK(void) //没有Acknowledge信号{ SDA=1;//发送1,非应答 SomeNOP(); SCL=1; SomeNOP();//产生时钟高电平 SCL=0; SomeNOP();}检测应答位bitTestAck(){ bitErrorBit; SDA=1; SCL=1; ErrorBit=SDA; SCL=0; return(ErrorBit);}写8位数据bitWrite8Bit(unsignedcharinput){ unsignedchartemp; for(temp=8;temp!=0;temp--){ SDA=(bit)(input&0x80); SCL=1; SCL=0; input=input<<1; }}读8位数据unsignedcharRead8Bit(){ unsignedchartemp,rbyte=0; for(temp=8;temp!=0;temp--){ SCL=1; rbyte=rbyte<<1; rbyte=rbyte|((unsignedchar)(SDA)); SCL=0; } return(rbyte);}

控制字,起始信号后必须是发送控制字。控制字格式,高4位为器件识别符(不同的芯片有不同的定义,EEPROM一般应为1010),接着3位为片选,也就是三个地址位,最后1位为读写控制位,当为1时为读操作,为0时为写操作。顺序读的操作:

下图给出的是顺序读的时序图。应当注意的是:最后一个读操作的第9个时钟周期不是“不关心”。为了结束读操作,主机必须在第9个周期间发出停止条件或者在第9个时钟周期内保持SDA为高电平、然后发出停止条件。顺序读的操作时序图:读写控制位为1顺序写的操作:

与上读操作类似,区别是控制字末位的读写控制位变成0。读写控制位为0I2C总线协议——写数据到从机

主机发送器用10位地址寻址从机接收器主机发送器用8位地址寻址从机接收器1ndBYTEvoidWrite24c02(unsignedchar*Wdata,unsignedcharRomAddress,unsignedcharnumber){ Start(); Write8Bit(WriteDeviceAddress); TestAck(); Write8Bit(RomAddress); TestAck(); for(;number!=0;number--){ Write8Bit(*Wdata); TestAck(); Wdata++; } Stop(); DelayMs(10);}I2C总线协议——写数据到从机

主机发送器用8位地址寻址从机接收器I2C总线协议——读从机数据

主机接收器用8位地址寻址从机发送器1ndBYTE先启动一个写命令,发送地址给从机。然后再次启动读命令,读数据。voidRead24c02(unsignedchar*RamAddress,unsignedcharRomAddress,unsignedcharbytes){ Start(); Write8Bit(WriteDeviceAddress); TestAck(); Write8Bit(RomAddress); TestAck(); Start();//再次启动 Write8Bit(ReadDviceAddress); TestAck(); while(bytes!=1){ *RamAddress=Read8Bit(); Ack(); RamAddress++; bytes--; } *RamAddress=Read8Bit(); NoAck(); Stop();}I2C总线协议——读从机数据

主机发送器用8位地址寻址从机接收器在主程序中的调用读写子程序voidmain(void){ Bytebuf1[]={3,4,5,6,7,8}; Bytebuf2[]; Write24c02(buf1,0,6); Read24c02(buf2,0,6); if(buf1[1]==buf2[1])LED1=0; if(buf1[2]==buf2[2])LED2=0; if(buf1[3]==buf2[3])LED3=0; if(buf1[4]==buf2[4])LED4=0; while(1);}I2C总线协议——组合格式:

主机用10位地址寻址从机然后发送数据到这个从机并向这个从机读数据I2C新发展——恩智浦(NXP)公司扩展的I2C控制网络:

结束语

I2C总线的应用中的注意事项:

1)严格按照时序图的要求进行操作。

2)总线必须上拉,即在没有控制时,总线为1。在与逻辑中理解为释放总线。

3)程序中为配合相应的传输速率,在对口线操作的指令后,用NOP指令做一定的延时。

(2)总线典型信号的模拟子程序

启动信号子程序STASTA: SETB P1.0 ;总线启动子程序 SETB P1.1

NOPNOPCLR P1.1NOPNOPCLR P1.0RET附汇编语言模拟程序终止信号子程序STOPSTOP: NOP ;停止子程序CLR P1.1 SETB P1.0NOPNOPSETB P1.1NOPNOPCLRP1.0RET附汇编语言模拟程序发送应答位子程序MACKMACK: CLR P1.1 ;应答子程序

SETB P1.0 ;准备发送NOPNOPCLR P1.0SETBP1.1RET附汇编语言模拟程序发送非应答位子程序MNACKMNACK:CLR P1.0 CLR P1.1 SETB P1.1 ;非应答子程序SETB P1.0NOPNOPCLR P1.0CLR P1.1RET附汇编语言模拟程序(3)总线模拟传送的通用子程序总线数据模拟传送的通用软件包除了上述基本的启动、停止、发送应答位和发送非应答位子程序外,还有应答位检查(CACK)、发送一个字节数据(WRBYT)、接收一个字节数据(RDBYT)、发送n个字节数据(WRNBYT)、接收n个字节数据(RDNBYT)子程序。附汇编语言模拟程序①

应答位检查子程序CACK在应答位检查子程序(CACK)中,设置了标志位,CACK中用F0作标志位,当检查到正常应答位后,F0=0,否则F0=1。CACK: SETB P1.1 ;设P1.1为输入

SETB P1.0 ;准备读 CLR F0MOV A,P1;读P1.1 JNB ACC.1,GEND ;判断有无应答 SETB F0 ;P1.1为“1”,无应答,F0=1GEND: CLR P1.0 ;P1.1为“0”,有应答,F0=0 NOP RET②

发送一个字节数据(WRBYT)子程序占用资源:R0,C。WRBYT:MOV R0,#08H CLR P1.0 CLR CWLP:RLC A JC WR1

AJMP WR2 WLP1:DJNZ R0,WLP RETWR1:SETB P1.1 SETB P1.0NOP NOPCLR P1.0CLR P1.1AJMP WLP1WR2:CLR P1.1 SETB P1.0NOPNOPCLR P1.0AJMP WLP1 ③

接收一个字节数据(RDBYT)子程序

RDBYT: MOV R0,#08HRLP:

SETB P1.1 SETB P1.0 MOV A,P1 JNB ACC.1,RD0 AJMP RD1 RLP1:DJNZ R0,RLP RETRD0:CLR C MOV A,R2RLC AMOV R2,A CLR P1.0 AJMP RLP1RD1: SETB MOV A,R2RLC AMOV R2,ACLR P1.0 AJMP RLP1

发送n个字节数据(WRNBYT)子程序

WRNBYT:PUSHPSW MOV PSW,#18H MOV R3,NUMBYTLCALL STA MOV A,SLA LCALL WRBYT LCALL CACK JB F0,WRNBYT MOV R1,#MTDWRDA: MOV A,@R1LCALL WRBYTLCALL CACK

LCALL WRBYTLCALL CACK JB F0,WRNBYT INC R1 DJNZ R3,WRDALCALL STOPPOP PSWRET⑤

读取n个字节数据(RDNBYT)子程序

RDNBYT:PUSHPSW MOV PSW,#18 MOV R3,NUMBYTLCALL STA MOV A,SLA LCALL WRBYT JB F0,RDNBYT RDN:MOVR1,#MRD RDN1:LCALL RDBY MOV @R1,A DJNZ R3,ACK LCALL MNACK LCALL STOP

POP PSWRETACK:LCALL MACKINC R1

SJMP RDN1

第一篇AD/DA----PCF8591

(1)AIN0~AIN3:模拟输入端;(2)VSS:电源地线;(3)A0~A2:地址输入端;(4)SDA:总线数据线;(5)SCL:总线的时钟输入端;(6)OSC:外部时钟输入端/内部时钟输出端;(7)EXT:时钟选择端。为1时,用外部时钟;为0时,用内部时钟;(8)AGND:模拟信号地;(9)VREF:基准电源输入端;(10)AOUT:D/A转换模拟

1.PCF8591的主要特性与引脚功能

2.PCF8591的结构与应用原理

控制寄存器其控制字格式如下:

D1、D0=00时:模拟量输入通道选择0通道D1、D0=01时:模拟量输入通道选择1通道D1、D0=10时:模拟量输入通道选择2通道D1、D0=11时:模拟量输入通道选择3通道D7D6D5D4D3D2D1D00×××0×××D2:自动增量选择位,此位有效,A/D转换通道自动循环递增,每次A/D转换结束都自动选择下一通道。D3、D7:标志位,必须设置为“0”。D5、D4:模拟量输入方式选择,分别为4路单端输入、3路差分输入、单端与差分混合、两路差分输入4种方式。

D6:模拟量输出允许位,D6=1时激活模拟量输出3.PCF8591的数据操作格式

(1)DAC数据操作格式

S:总线的启始信号(电平由高到低);SLAW:总线的8位寻址字节(写);A:应答信号(低电平);CONBYT:PCF8591的控制字,D/A转换时控制字D6位置1;DATA0~DATAn:待转换的二进制数;P:总线的终止信号(电平由低到高)。(2)ADC数据操作格式

S:总线的启始信号;SLAW:总线的8位寻址字节(写);A:应答信号;CONBYT:PCF8591的控制字;SLAR:总线的8位寻址字节(读);DATA0~DATAn:A/D转换的结果;:非应答信号(高电平);P:总线的终止信号。4.PCF8591与8051的接口电路

5.程序SLAW0 EQU 90H SLAR0 EQU 91H COMMAND0EQU 40H ORG 0100HMAIN: MOV SP,#70H MOV SLA,#SLAR0 MOV NUMBYT,#01H LCALL RDNBYT MOV 31H,MRD MOV MTD,#COMMAND0 MOV SLA,#SLAW0 MOV NUMBYT,#02H LCALL WRNBYT LJMP MAIN从通道0采集A/D信号,再通过D/A转换器将信号输出的程序如下:MagneticResonanceImaging磁共振成像发生事件作者或公司磁共振发展史1946发现磁共振现象BlochPurcell1971发现肿瘤的T1、T2时间长Damadian1973做出两个充水试管MR图像Lauterbur1974活鼠的MR图像Lauterbur等1976人体胸部的MR图像Damadian1977初期的全身MR图像

Mallard1980磁共振装置商品化1989

0.15T永磁商用磁共振设备中国安科

2003诺贝尔奖金LauterburMansfierd时间MR成像基本原理实现人体磁共振成像的条件:人体内氢原子核是人体内最多的物质。最易受外加磁场的影响而发生磁共振现象(没有核辐射)有一个稳定的静磁场(磁体)梯度场和射频场:前者用于空间编码和选层,后者施加特定频率的射频脉冲,使之形成磁共振现象信号接收装置:各种线圈计算机系统:完成信号采集、传输、图像重建、后处理等

人体内的H核子可看作是自旋状态下的小星球。自然状态下,H核进动杂乱无章,磁性相互抵消zMyx进入静磁场后,H核磁矩发生规律性排列(正负方向),正负方向的磁矢量相互抵消后,少数正向排列(低能态)的H核合成总磁化矢量M,即为MR信号基础ZZYYXB0XMZMXYA:施加90度RF脉冲前的磁化矢量MzB:施加90度RF脉冲后的磁化矢量Mxy.并以Larmor频率横向施进C:90度脉冲对磁化矢量的作用。即M以螺旋运动的形式倾倒到横向平面ABC在这一过程中,产生能量

三、弛豫(Relaxation)回复“自由”的过程

1.

纵向弛豫(T1弛豫):

M0(MZ)的恢复,“量变”高能态1H→低能态1H自旋—晶格弛豫、热弛豫

吸收RF光子能量(共振)低能态1H高能态1H

放出能量(光子,MRS)T1弛豫时间:

MZ恢复到M0的2/3所需的时间

T1愈小、M0恢复愈快T2弛豫时间:MXY丧失2/3所需的时间;T2愈大、同相位时间长MXY持续时间愈长MXY与ST1加权成像、T2加权成像

所谓的加权就是“突出”的意思

T1加权成像(T1WI)----突出组织T1弛豫(纵向弛豫)差别

T2加权成像(T2WI)----突出组织T2弛豫(横向弛豫)差别。

磁共振诊断基于此两种标准图像磁共振常规h检查必扫这两种标准图像.T1的长度在数百至数千毫秒(ms)范围T2值的长度在数十至数千毫秒(ms)范围

在同一个驰豫过程中,T2比T1短得多

如何观看MR图像:首先我们要分清图像上的各种标示。分清扫描序列、扫描部位、扫描层面。正常或异常的所在部位---即在同一层面观察、分析T1、T2加权像上信号改变。绝大部分病变T1WI是低信号、T2WI是高信号改变。只要熟悉扫描部位正常组织结构的信号表现,通常病变与正常组织不会混淆。一般的规律是T1WI看解剖,T2WI看病变。磁共振成像技术--图像空间分辨力,对比分辨力一、如何确定MRI的来源(一)层面的选择1.MXY产生(1H共振)条件

RF=ω=γB02.梯度磁场Z(GZ)

GZ→B0→ω

不同频率的RF

特定层面1H激励、共振

3.层厚的影响因素

RF的带宽↓

GZ的强度↑层厚↓〈二〉体素信号的确定1、频率编码2、相位编码

M0↑--GZ、RF→相应层面MXY----------GY→沿Y方向1H有不同ω

各1H同相位MXY旋进速度不同同频率一定时间后→→GX→沿X方向1H有不同ω沿Y方向不同1H的MXYMXY旋进频率不同位置不同(相位不同)〈三〉空间定位及傅立叶转换

GZ----某一层面产生MXYGX----MXY旋进频率不同

GY----MXY旋进相位不同(不影响MXY大小)

↓某一层面不同的体素,有不同频率、相位

MRS(FID)第三节、磁共振检查技术检查技术产生图像的序列名产生图像的脉冲序列技术名TRA、COR、SAGT1WT2WSETR、TE…….梯度回波FFE快速自旋回波FSE压脂压水MRA短TR短TE--T1W长TR长TE--T2W增强MR最常用的技术是:多层、多回波的SE(spinecho,自旋回波)技术磁共振扫描时间参数:TR、TE磁共振扫描还有许多其他参数:层厚、层距、层数、矩阵等序列常规序列自旋回波(SE),快速自旋回波(FSE)梯度回波(FE)反转恢复(IR),脂肪抑制(STIR)、水抑制(FLAIR)高级序列水成像(MRCP,MRU,MRM)血管造影(MRA,TOF2D/3D)三维成像(SPGR)弥散成像(DWI)关节运动分析是一种成像技术而非扫描序列自旋回波(SE)必扫序列图像清晰显示解剖结构目前只用于T1加权像快速自旋回波(FSE)必扫序列成像速度快多用于T2加权像梯度回波(GE)成像速度快对出血敏感T2加权像水抑制反转恢复(IR)水抑制(FLAIR)抑制自由水梗塞灶显示清晰判断病灶成份脂肪抑制反转恢复(IR)脂肪抑制(STIR)抑制脂肪信号判断病灶成分其它组织显示更清晰血管造影(MRA)无需造影剂TOF法PC法MIP投影动静脉分开显示水成像(MRCP,MRU,MRM)含水管道系统成像胆道MRCP泌尿路MRU椎管MRM主要用于诊断梗阻扩张超高空间分辨率扫描任意方位重建窄间距重建技术大大提高对小器官、小病灶的诊断能力三维梯度回波(SPGR) 早期诊断脑梗塞

弥散成像MRI的设备一、信号的产生、探测接受1.磁体(Magnet):静磁场B0(Tesla,T)→组织净磁矩M0

永磁型(permanentmagnet)常导型(resistivemagnet)超导型(superconductingmagnet)磁体屏蔽(magnetshielding)2.梯度线圈(gradientcoil):

形成X、Y、Z轴的磁场梯度功率、切换率3.射频系统(radio-frequencesystem,RF)

MR信号接收二、信号的处理和图象显示数模转换、计算机,等等;MRI技术的优势1、软组织分辨力强(判断组织特性)2、多方位成像3、流空效应(显示血管)4、无骨骼伪影5、无电离辐射,无碘过敏6、不断有新的成像技术MRI技术的禁忌证和限度1.禁忌证

体内弹片、金属异物各种金属置入:固定假牙、起搏器、血管夹、人造关节、支架等危重病人的生命监护系统、维持系统不能合作病人,早期妊娠,高热及散热障碍2.其他钙化显示相对较差空间分辨较差(体部,较同等CT)费用昂贵多数MR机检查时间较长1.病人必须去除一切金属物品,最好更衣,以免金属物被吸入磁体而影响磁场均匀度,甚或伤及病人。2.扫描过程中病人身体(皮肤)不要直接触碰磁体内壁及各种导线,防止病人灼伤。3.纹身(纹眉)、化妆品、染发等应事先去掉,因其可能会引起灼伤。4.病人应带耳塞,以防听力损伤。扫描注意事项颅脑MRI适应症颅内良恶性占位病变脑血管性疾病梗死、出血、动脉瘤、动静脉畸形(AVM)等颅脑外伤性疾病脑挫裂伤、外伤性颅内血肿等感染性疾病脑脓肿、化脓性脑膜炎、病毒性脑炎、结核等脱髓鞘性或变性类疾病多发性硬化(MS)等先天性畸形胼胝体发育不良、小脑扁桃体下疝畸形等脊柱和脊髓MRI适应证1.肿瘤性病变椎管类肿瘤(髓内、髓外硬膜内、硬膜外),椎骨肿瘤(转移性、原发性)2.炎症性疾病脊椎结核、骨髓炎、椎间盘感染、硬膜外脓肿、蛛网膜炎、脊髓炎等3.外伤骨折、脱位、椎间盘突出、椎管内血肿、脊髓损伤等4.脊柱退行性变和椎管狭窄症椎间盘变性、膨隆、突出、游离,各种原因椎管狭窄,术后改变,5.脊髓血管畸形和血管瘤6.脊髓脱髓鞘疾病(如MS),脊髓萎缩7.先天性畸形胸部MRI适应证呼吸系统对纵隔及肺门区病变显示良好,对肺部结构显示不如CT。胸廓入口病变及其上下比邻关系纵隔肿瘤和囊肿及其与大血管的关系其他较CT无明显优越性心脏及大血管大血管病变各类动脉瘤、腔静脉血栓等心脏及心包肿瘤,心包其他病变其他(如先心、各种心肌病等)较超声心动图无优势,应用不广腹部MRI适应证主要用于部分实质性器官的肿瘤性病变肝肿瘤性病变,提供鉴别信息胰腺肿瘤,有利小胰癌、胰岛细胞癌显示宫颈、宫体良恶性肿瘤及分期等,先天畸形肿瘤的定位(脏器上下缘附近)、分期胆道、尿路梗阻和肿瘤,MRCP,MRU直肠肿瘤骨与关节MRI适应证X线及CT的后续检查手段--钙质显示差和空间分辨力部分情况可作首选:1.累及骨髓改变的骨病(早期骨缺血性坏死,早期骨髓炎、骨髓肿瘤或侵犯骨髓的肿瘤)2.结构复杂关节的损伤(膝、髋关节)3.形状复杂部位的检查(脊柱、骨盆等)软件登录界面软件扫描界面图像浏览界面胶片打印界面报告界面报告界面2合理应用抗菌药物预防手术部位感染概述外科手术部位感染的2/3发生在切口医疗费用的增加病人满意度下降导致感染、止血和疼痛一直是外科的三大挑战,止血和疼痛目前已较好解决感染仍是外科医生面临的重大问题,处理不当,将产生严重后果外科手术部位感染占院内感染的14%~16%,仅次于呼吸道感染和泌尿道感染,居院内感染第3位严重手术部位的感染——病人的灾难,医生的梦魇

预防手术部位感染(surgicalsiteinfection,SSI)

手术部位感染的40%–60%可以预防围手术期使用抗菌药物的目的外科医生的困惑★围手术期应用抗生素是预防什么感染?★哪些情况需要抗生素预防?★怎样选择抗生素?★什么时候开始用药?★抗生素要用多长时间?定义:指发生在切口或手术深部器官或腔隙的感染分类:切口浅部感染切口深部感染器官/腔隙感染一、SSI定义和分类二、SSI诊断标准——切口浅部感染

指术后30天内发生、仅累及皮肤及皮下组织的感染,并至少具备下述情况之一者:

1.切口浅层有脓性分泌物

2.切口浅层分泌物培养出细菌

3.具有下列症状体征之一:红热,肿胀,疼痛或压痛,因而医师将切口开放者(如培养阴性则不算感染)

4.由外科医师诊断为切口浅部SSI

注意:缝线脓点及戳孔周围感染不列为手术部位感染二、SSI诊断标准——切口深部感染

指术后30天内(如有人工植入物则为术后1年内)发生、累及切口深部筋膜及肌层的感染,并至少具备下述情况之一者:

1.切口深部流出脓液

2.切口深部自行裂开或由医师主动打开,且具备下列症状体征之一:①体温>38℃;②局部疼痛或压痛

3.临床或经手术或病理组织学或影像学诊断,发现切口深部有脓肿

4.外科医师诊断为切口深部感染

注意:感染同时累及切口浅部及深部者,应列为深部感染

二、SSI诊断标准—器官/腔隙感染

指术后30天内(如有人工植入物★则术后1年内)、发生在手术曾涉及部位的器官或腔隙的感染,通过手术打开或其他手术处理,并至少具备以下情况之一者:

1.放置于器官/腔隙的引流管有脓性引流物

2.器官/腔隙的液体或组织培养有致病菌

3.经手术或病理组织学或影像学诊断器官/腔隙有脓肿

4.外科医师诊断为器官/腔隙感染

★人工植入物:指人工心脏瓣膜、人工血管、人工关节等二、SSI诊断标准—器官/腔隙感染

不同种类手术部位的器官/腔隙感染有:

腹部:腹腔内感染(腹膜炎,腹腔脓肿)生殖道:子宫内膜炎、盆腔炎、盆腔脓肿血管:静脉或动脉感染三、SSI的发生率美国1986年~1996年593344例手术中,发生SSI15523次,占2.62%英国1997年~2001年152所医院报告在74734例手术中,发生SSI3151例,占4.22%中国?SSI占院内感染的14~16%,仅次于呼吸道感染和泌尿道感染三、SSI的发生率SSI与部位:非腹部手术为2%~5%腹部手术可高达20%SSI与病人:入住ICU的机会增加60%再次入院的机会是未感染者的5倍SSI与切口类型:清洁伤口 1%~2%清洁有植入物 <5%可染伤口<10%手术类别手术数SSI数感染率(%)小肠手术6466610.2大肠手术7116919.7子宫切除术71271722.4肝、胆管、胰手术1201512.5胆囊切除术8222.4不同种类手术的SSI发生率:三、SSI的发生率手术类别SSI数SSI类别(%)切口浅部切口深部器官/腔隙小肠手术6652.335.412.3大肠手术69158.426.315.3子宫切除术17278.813.57.6骨折开放复位12379.712.28.1不同种类手术的SSI类别:三、SSI的发生率延迟愈合疝内脏膨出脓肿,瘘形成。需要进一步处理这里感染将导致:延迟愈合疝内脏膨出脓肿、瘘形成需进一步处理四、SSI的后果四、SSI的后果在一些重大手术,器官/腔隙感染可占到1/3。SSI病人死亡的77%与感染有关,其中90%是器官/腔隙严重感染

——InfectControlandHospEpidemiol,1999,20(40:247-280SSI的死亡率是未感染者的2倍五、导致SSI的危险因素(1)病人因素:高龄、营养不良、糖尿病、肥胖、吸烟、其他部位有感染灶、已有细菌定植、免疫低下、低氧血症五、导致SSI的危险因素(2)术前因素:术前住院时间过长用剃刀剃毛、剃毛过早手术野卫生状况差(术前未很好沐浴)对有指征者未用抗生素预防五、导致SSI的危险因素(3)手术因素:手术时间长、术中发生明显污染置入人工材料、组织创伤大止血不彻底、局部积血积液存在死腔和/或失活组织留置引流术中低血压、大量输血刷手不彻底、消毒液使用不当器械敷料灭菌不彻底等手术特定时间是指在大量同种手术中处于第75百分位的手术持续时间其因手术种类不同而存在差异超过T越多,SSI机会越大五、导致SSI的危险因素(4)SSI危险指数(美国国家医院感染监测系统制定):病人术前已有≥3种危险因素污染或污秽的手术切口手术持续时间超过该类手术的特定时间(T)

(或一般手术>2h)六、预防SSI干预方法根据指南使用预防性抗菌药物正确脱毛方法缩短术前住院时间维持手术患者的正常体温血糖控制氧疗抗菌素的预防/治疗预防

在污染细菌接触宿主手术部位前给药治疗

在污染细菌接触宿主手术部位后给药

防患于未然六、预防SSI干预方法

——抗菌药物的应用120预防和治疗性抗菌素使用目的:清洁手术:防止可能的外源污染可染手术:减少粘膜定植细菌的数量污染手术:清除已经污染宿主的细菌六、预防SSI干预方法

——抗菌药物的应用121需植入假体,心脏手术、神外手术、血管外科手术等六、预防SSI干预方法

——抗菌药物的应用预防性抗菌素使用指征:可染伤口(Clean-contaminatedwound)污染伤口(Contaminatedwound)清洁伤口(Cleanwound)但存在感染风险六、预防SSI干预方法

——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?六、预防SSI干预方法

——抗菌药物的应用预防性抗菌素显示有效的手术有:妇产科手术胃肠道手术(包括阑尾炎)口咽部手术腹部和肢体血管手术心脏手术骨科假体植入术开颅手术某些“清洁”手术六、预防SSI干预方法

——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?六、预防SSI干预方法

——抗菌药物的应用

理想的给药时间?目前还没有明确的证据表明最佳的给药时机研究显示:切皮前45~75min给药,SSI发生率最低,且不建议在切皮前30min内给药影响给药时间的因素:所选药物的代谢动力学特性手术中污染发生的可能时间病人的循环动力学状态止血带的使用剖宫产细菌在手术伤口接种后的生长动力学

手术过程

012345671hr2hrs6hrs1day3-5days细菌数logCFU/ml六、预防SSI干预方法

——抗菌药物的应用127术后给药,细菌在手术伤口接种的生长动力学无改变

手术过程抗生素血肿血浆六、预防SSI干预方法

——抗菌药物的应用Antibioticsinclot

手术过程

血浆中抗生素予以抗生素血块中抗生素血浆术前给药,可以有效抑制细菌在手术伤口的生长六、预防SSI干预方法

——抗菌药物的应用129ClassenDC,etal..NEnglJMed1992;326:281切开前时间切开后时间予以抗生素切开六、预防SSI干预方法

——抗菌药物的应用不同给药时间,手术伤口的感染率不同NEJM1992;326:281-6投药时间感染数(%)相对危险度(95%CI)早期(切皮前2-24h)36914(3.8%)6.7(2.9-14.7)4.3手术前(切皮前45-75min)170810(0.9%)1.0围手术期(切皮后3h内)2824(1.4%)2.4(0.9-7.9) 2.1手术后(切皮3h以上)48816(3.3%)5.8(2.6-12.3)

5.8全部284744(1.5%)似然比病人数六、预防SSI干预方法

——抗菌药物的应用结论:抗生素在切皮前45-75min或麻醉诱导开始时给药,预防SSI效果好131六、预防SSI干预方法

——抗菌药物的应用切口切开后,局部抗生素分布将受阻必须在切口切开前给药!!!抗菌素应在切皮前45~75min给药六、预防SSI干预方法

——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?有效安全杀菌剂半衰期长相对窄谱廉价六、预防SSI干预方法

——抗菌药物的应用抗生素的选择原则:各类手术最易引起SSI的病原菌及预防用药选择六、预防SSI干预方法

——抗菌药物的应用

手术最可能的病原菌预防用药选择胆道手术革兰阴性杆菌,厌氧菌头孢呋辛或头孢哌酮或

(如脆弱类杆菌)头孢曲松阑尾手术革兰阴性杆菌,厌氧菌头孢呋辛或头孢噻肟;

(如脆弱类杆菌)+甲硝唑结、直肠手术革兰阴性杆菌,厌氧菌头孢呋辛或头孢曲松或

(如脆弱类杆菌)头孢噻肟;+甲硝唑泌尿外科手术革兰阴性杆菌头孢呋辛;环丙沙星妇产科手术革兰阴性杆菌,肠球菌头孢呋辛或头孢曲松或

B族链球菌,厌氧菌头孢噻肟;+甲硝唑莫西沙星(可单药应用)注:各种手术切口感染都可能由葡萄球菌引起六、预防SSI干预方法

——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?六、预防SSI干预方法

——抗菌药物的应用单次给药还是多次给药?没有证据显示多次给药比单次给药好伤口关闭后给药没有益处多数指南建议24小时内停药没有必要维持抗菌素治疗直到撤除尿管和引流管手术时间延长或术中出血量较大时可重复给药细菌污染定植感染一次性用药用药24h用药4872h数小时从十数小时到数十小时六、预防SSI干预方法

——抗菌药物的应用用药时机不同,用药期限也应不同短时间预防性应用抗生素的优点:六、预防SSI干预方法

——抗菌药物的应用减少毒副作用不易产生耐药菌株不易引起微生态紊乱减轻病人负担可以选用单价较高但效果较好的抗生素减少护理工作量药品消耗增加抗菌素相关并发症增加耐药抗菌素种类增加易引起脆弱芽孢杆菌肠炎MRSA(耐甲氧西林金黄色葡萄球菌)定植六、预防SSI干预方法

——抗菌药物的应用延长抗菌素使用的缺点:六、预防SSI干预方法

——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?正确的给药方法:六、预防SSI干预方法

——抗菌药物的应用应静脉给药,2030min滴完肌注、口服存在吸收上的个体差异,不能保证血液和组织的药物浓度,不宜采用常用的-内酰胺类抗生素半衰期为12h,若手术超过34h,应给第2个剂量,必要时还可用第3次可能有损伤肠管的手术,术前用抗菌药物准备肠道局部抗生素冲洗创腔或伤口无确切预防效果,不予提倡不应将日常全身性应用的抗生素应用于伤口局部(诱发高耐药)必要时可用新霉素、杆菌肽等抗生素缓释系统(PMMA—青大霉素骨水泥或胶原海绵)局部应用可能有一定益处六、预防SSI干预方法

——抗菌药物的应用不提倡局部预防应用抗生素:时机不当时间太长选药不当,缺乏针对性六、预防SSI干预方法

——抗菌药物的应用预防用药易犯的错误:在开刀前45-75min之内投药按最新临床指南选药术后24小时内停药择期手术后一般无须继续使用抗生素大量对比研究证明,手术后继续用药数次或数天并不能降低手术后感染率若病人有明显感染高危因素或使用人工植入物,可再用1次或数次小结预防SSI干预方法

——正确的脱毛方法用脱毛剂、术前即刻备皮可有效减少SSI的发生手术部位脱毛方法与切口感染率的关系:备皮方法 剃毛备皮 5.6%

脱毛0.6%备皮时间 术前24小时前 >20%

术前24小时内 7.1%

术前即刻 3.1%方法/时间 术前即刻剪毛 1.8%

前1晚剪/剃毛 4.0%THANKYOUMagneticResonanceImagingPART01磁共振成像发生事件作者或公司磁共振发展史1946发现磁共振现象BlochPurcell1971发现肿瘤的T1、T2时间长Damadian1973做出两个充水试管MR图像Lauterbur1974活鼠的MR图像Lauterbur等1976人体胸部的MR图像Damadian1977初期的全身MR图像

Mallard1980磁共振装置商品化1989

0.15T永磁商用磁共振设备中国安科

2003诺贝尔奖金LauterburMansfierd时间PART02MR成像基本原理实现人体磁共振成像的条件:人体内氢原子核是人体内最多的物质。最易受外加磁场的影响而发生磁共振现象(没有核辐射)有一个稳定的静磁场(磁体)梯度场和射频场:前者用于空间编码和选层,后者施加特定频率的射频脉冲,使之形成磁共振现象信号接收装置:各种线圈计算机系统:完成信号采集、传输、图像重建、后处理等

人体内的H核子可看作是自旋状态下的小星球。自然状态下,H核进动杂乱无章,磁性相互抵消zMyx进入静磁场后,H核磁矩发生规律性排列(正负方向),正负方向的磁矢量相互抵消后,少数正向排列(低能态)的H核合成总磁化矢量M,即为MR信号基础ZZYYXB0XMZMXYA:施加90度RF脉冲前的磁化矢量MzB:施加90度RF脉冲后的磁化矢量Mxy.并以Larmor频率横向施进C:90度脉冲对磁化矢量的作用。即M以螺旋运动的形式倾倒到横向平面ABC在这一过程中,产生能量

三、弛豫(Relaxation)回复“自由”的过程

1.

纵向弛豫(T1弛豫):

M0(MZ)的恢复,“量变”高能态1H→低能态1H自旋—晶格弛豫、热弛豫

吸收RF光子能量(共振)低能态1H高能态1H

放出能量(光子,MRS)T1弛豫时间:

MZ恢复到M0的2/3所需的时间

T1愈小、M0恢复愈快T2弛豫时间:MXY丧失2/3所需的时间;T2愈大、同相位时间长MXY持续时间愈长MXY与ST1加权成像、T2加权成像

所谓的加权就是“突出”的意思

T1加权成像(T1WI)----突出组织T1弛豫(纵向弛豫)差别

T2加权成像(T2WI)----突出组织T2弛豫(横向弛豫)差别。

磁共振诊断基于此两种标准图像磁共振常规h检查必扫这两种标准图像.T1的长度在数百至数千毫秒(ms)范围T2值的长度在数十至数千毫秒(ms)范围

在同一个驰豫过程中,T2比T1短得多

如何观看MR图像:首先我们要分清图像上的各种标示。分清扫描序列、扫描部位、扫描层面。正常或异常的所在部位---即在同一层面观察、分析T1、T2加权像上信号改变。绝大部分病变T1WI是低信号、T2WI是高信号改变。只要熟悉扫描部位正常组织结构的信号表现,通常病变与正常组织不会混淆。一般的规律是T1WI看解剖,T2WI看病变。磁共振成像技术--图像空间分辨力,对比分辨力一、如何确定MRI的来源(一)层面的选择1.MXY产生(1H共振)条件

RF=ω=γB02.梯度磁场Z(GZ)

GZ→B0→ω

不同频率的RF

特定层面1H激励、共振

3.层厚的影响因素

RF的带宽↓

GZ的强度↑层厚↓〈二〉体素信号的确定1、频率编码2、相位编码

M0↑--GZ、RF→相应层面MXY----------GY→沿Y方向1H有不同ω

各1H同相位MXY旋进速度不同同频率一定时间后→→GX→沿X方向1H有不同ω沿Y方向不同1H的MXYMXY旋进频率不同位置不同(相位不同)〈三〉空间定位及傅立叶转换

GZ----某一层面产生MXYGX----MXY旋进频率不同

GY----MXY旋进相位不同(不影响MXY大小)

↓某一层面不同的体素,有不同频率、相位

MRS(FID)第三节、磁共振检查技术检查技术产生图像的序列名产生图像的脉冲序列技术名TRA、COR、SAGT1WT2WSETR、TE…….梯度回波FF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论