普通混凝土的主要技术性质_第1页
普通混凝土的主要技术性质_第2页
普通混凝土的主要技术性质_第3页
普通混凝土的主要技术性质_第4页
普通混凝土的主要技术性质_第5页
已阅读5页,还剩185页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第六章混凝土内容:

§6.1普通混凝土的组成材料

§6.1.1水泥

§6.1.2骨料

§6.1.3混凝土拌合及养护用水

§6.1.4外加剂及掺合料

§6.2普通混凝土的主要技术性质

§6.3普通混凝土的配合比设计和质量控制§6.4其他品种混凝土

复习思考题§6.2普通混凝土的主要技术性质§6.2.1混凝土拌合物(新拌混凝土)的性能一.新拌混凝土的和易性1、和易性的概念和易性是指混凝土拌合物易于各工序(搅拌、运输、浇注、捣实)施工操作,并获得质量均匀、成型密实的混凝土性能。和易性是一项综合的技术指标,包括流动性、粘聚性和保水性等三方面的含义。

混凝土的主要技术性质包括混凝土拌合物的和易性、硬化混凝土的强度及耐久性。混凝土在未凝结硬化以前,称为混凝土拌合物或称新拌混凝土,相对“硬化混凝土”而言。⑴流动性:混凝土拌合物在自重或机械振捣作用下能产生流动,并均匀密实地填满模板的性能。⑵粘聚性:混凝土各组成材料间具有一定粘聚力,在运输和浇注过程中不致产生分层和离析现象,使混凝土保持整体均匀的性能。⑶保水性:混凝土拌和物具有一定的保持内部水分的能力,在施工过程中不致产生严重泌水现象。混凝土拌合物的流动性、粘聚性、保水性之间互相联系又存在矛盾。所谓拌合物的和易性良好,就是要使这三方面的性能在某种具体条件下,达到均为良好,即使矛盾得到统一。

2、和易性的测定方法目前,尚没有能够全面反映混凝土拌合物和易性的测定方法。根据我国现行标准《普通混凝土拌合物性能试验方法》(GB/T50080-2002),用坍落度和维勃稠度测定混凝土拌合物的流动性,并辅以直观经验评定粘聚性和保水性。评定和易性好坏,主要以测定流动性指标为主,辅以观察其粘聚性、保水性。

(1)坍落度试验☆将混凝土拌合物分三层装入标准坍落度筒中,每层插捣25次并装满刮平。垂直向上将筒提起,混凝土拌合物由于自重将会向下坍落。量测筒高与坍落后混凝土试体最高点之间的高度差(以mm计),即为坍落度。☆坍落度越大,表示混凝土拌合物的流动性越大。☆在进行坍落度试验的同时,应观察混凝土拌合物的粘聚性、保水性,以便全面地评定混凝土拌合物的和易性。实验步骤

1、按比例配出拌和材料,将它们倒在拌板上并用铁锹拌匀,再将中间扒一凹洼,边加水边进行拌和,直至拌和均匀。

2、用湿布将拌板及坍落度筒内外擦净、润滑,并将筒顶部加上漏斗,放在拌板上。用双脚踩紧踏板,使其位置固定。

3、用小铲将拌好的拌和物分三层均匀的装入筒内,每层装入高度在插捣后大致为筒高的三分之一。顶层装料时,应使拌和物高出筒顶。插捣过程中,如试样沉落到低于筒口,则应随时添加,以便自始至终保持高于筒顶。每装一层分别用捣棒插捣25次,插捣应在全部面积上进行,沿螺旋线由边缘渐向中心。在筒边插捣时,捣棒应稍有倾斜,然后垂直插捣中心部分。每层插捣时应捣至下层表面为止。

4、插捣完毕后卸下漏斗,将多余的拌和物用镘刀刮去,使之与筒顶面齐平,筒周围拌板上的杂物必须刮净、清除。

5、将坍落度筒小心平稳地垂直向上提起,不得歪斜,提离过程约5~10s

内完成,将筒放在拌和物试体一旁,量出坍落后拌和物试体最高点与筒的高度差(以mm为单位,读数精确至5mm),即为该拌和物的坍落度。从开始装料到提起坍落度筒的整个过程在150s内完成。6、当坍落度筒提离后,如试件发生崩坍或一边剪坏现象,则应重新取样进行试验。如第二次仍然出现这种现象,则表示该拌和物和易性不好,应予记录备案。

7、测定坍落度后,观察拌和物的下述性质,并记录。★粘聚性的评定方法:用捣棒在已坍落的混凝土锥体侧面轻轻敲打,若锥体逐渐下沉,则表示粘聚性良好;如果锥体倒塌,部分崩裂或出现离析现象,则表示粘聚性不好。★保水性的评定方法:坍落度筒提起后,如有较多稀浆从底部析出(淌浆),锥体部分混凝土拌合物也因失浆而骨料外露,则表明混凝土拌合物保水性能不好;无稀浆或仅有少量稀浆自底部析出,则表示保水性良好。☆坍落度越大,一般表示其流动性越大,但也许因其粘聚性差。(2)维勃稠度试验对坍落度值小于10㎜的干硬性混凝土,采用维勃稠度试验。在维勃稠度仪上的坍落度筒中按规定方法装满拌合物,提起坍落度筒,在拌合物试体顶面放一透明圆盘,开启振动台,同时用秒表计时,当水泥浆完全布满透明圆盘底面的瞬间,记下秒表的秒数,称为维勃稠度。混凝土拌合物流动性按维勃稠度大小,可分为四级:超干硬性:≥31s特干硬性:30~21s干硬性:20~11s半干硬性:10~5s3.流动性(坍落度)的选择根据坍落度的不同,可将混凝土拌合物分为:低塑性混凝土(坍落度值为10~40mm)塑性混凝土(坍落度值为40—90mm)流动性混凝土(坍落度值为90~150mm)大流动性混凝土(坍落度值≥150mm)。坍落度试验适用于骨料最大粒径不大于37.5mm,坍落度值不小于10mm的塑性混凝土拌和物;坍落度值小于10mm的干硬性混凝土拌和物应采用维勃稠度法测定。当构件截面较小或钢筋较密,或采用人工插捣时,坍落度可选大些;反之,如构件截面尺寸较大,或钢筋较疏,或采用机械振捣时,坍落度可选择小些。

根据《混凝土结构工程施工质量验收规范》(GB50204-2002)的规定,混凝土浇筑时的坍落度宜按下表选用。

混凝土浇筑时的坍落度结构种类坍落度(mm)基础或地面等的垫层、无配筋的大体积结构(挡土墙、基础等)或配筋稀疏的结构10~30板、梁和大型及中型截面的柱子等30~50配筋密列的结构(薄壁、斗仓、筒仓、细柱等)50~70配筋特密的结构70~90流动性(坍落度)的选择

该表是采用机械振捣的坍落度,采用人工捣实时可适当增大。当施工工艺采用混凝土泵送混凝土拌合物时,则要求混凝土拌合物具有高流动性,其坍落度通常在80-180mm。4、影响和易性的主要因素(1)水泥浆的用量(2)水泥浆的稠度(3)砂率(4)组成材料的品种及性质

(5)外加剂(6)时间及温度4、影响和易性的主要因素(1)水泥浆的数量在混凝土拌合物中,水泥浆包裹骨料表面,填充骨料空隙,使骨料润滑,提高混合料的流动性;在水灰比不变的情况下,单位体积混合物内,随水泥浆的增多,混合物的流动性增大。若水泥浆过多,超过骨料表面的包裹限度,就会出现流浆现象,这既浪费水泥又降低混凝土的性能;如水泥浆过少,达不到包裹骨料表面和填充空隙的目的,使粘聚性变差,流动性低,不仅产生崩塌现象,还会使混凝土的强度和耐久性降低。混合物中水泥浆的数量以满足流动性要求为宜。(2)水泥浆的稠度(有时写作:水灰比W/C或灰水比C/W)水灰比,是指单位砼用水量与水泥用量的质量比,以W/C表示。水泥浆的稀稠,取决于水灰比的大小。水灰比小,水泥浆稠,拌合物流动性就小,会使施工困难,混凝土拌合物难以保证密实成型。若水灰比过大,又会造成混凝土拌合物的粘聚性和保水性不良,而产生流浆、离析现象,并严重影响混凝土的强度。水灰比不能过大或过小,依据混凝土强度和耐久性要求合理地选用。4、影响和易性的主要因素无论是水泥浆的多少或是水泥浆的稀稠,实际上都反映了用水量是对混凝土拌合物流动性起决定性作用的因素。因为在一定条件下,要使混凝土拌合物获得一定的流动性,所需的单位用水量基本上是一个定值。单纯加大用水量会降低混凝土的强度和耐久性,因此,对混凝土拌合物流动性的调整,应在保持水灰比不变的条件下,以改变水泥浆量的方法来调整,使其满足施工要求。(3)砂率定义——混凝土中砂的质量占砂、石总质量的百分率。砂率的变动会使骨料的总表面积及空隙率都会发生变化。水泥砂浆在砼拌和物中起润滑作用,可以减少粗集料颗粒之间的摩阻力,所以在一定砂率范围内,随着砂率的增加,润滑作用也明显增加,提高了混凝土拌和物的流动性。但砂率过大,即石子用量过少,砂子用量过多,此时集料的总表面积过大,在水泥浆量不变的情况下,水泥浆量相对少了,减弱了水泥浆的润滑作用,导致混凝土拌和物的流动性降低。如果砂率过小,即石子用量过大,砂子用量过少时,水泥砂浆的数量不足以包裹石子表面,在石子之间没有足够的砂浆层,减弱了水泥砂浆的润滑作用,不但会降低混凝土拌和物的流动性,而且会严重影响其粘聚性和保水性,容易产生离析现象。4、影响和易性的主要因素因此,砂率既不能过大,也不能过小,应有一个合理砂率值。当砂率适宜时,砂不但填满石子间的空隙,而且还能保证粗骨料间有一定厚度的砂浆层以减小粗骨料间的摩擦阻力,使混凝土拌和物有较好的流动性且能保持粘聚性和保水性良好,这个适宜的砂率称为合理砂率。合理砂率可通过试验、计算、查表等方法确定。

图4-7砂率与坍落度的关系图:砂率与水泥用量的关系(水与水泥用量一定)(达到相同的坍落度)(4)组成材料的品种及性质水泥品种,集料种类、形状和级配等,都对混凝土拌合物的和易性有一定影响。需水量大的水泥拌合物,其物流动性小。如普通水泥的混凝土拌合物比矿渣和火山灰的和易性好。在相同用水量条件下,集料表面光滑、少棱角、形状较圆的卵石所拌制的拌合物流动性较碎石的大。4、影响和易性的主要因素(5)外加剂在拌制混凝土时,加入少量的外加剂能使混凝土拌和物在不增加水泥用量的条件下,获得良好的和易性,不仅流动性显著增加,而且有效地改善混凝土拌和物的粘聚性和保水性。4、影响和易性的主要因素(6)时间及温度拌合后的混凝土拌合物,随时间延长而逐渐变得干稠,流动性减小,原因是一部分水供水泥水化,一部分水被骨料吸收,一部分水蒸发以及混凝土凝聚结构的逐渐形成,致使混凝土拌合物的流动性变差。拌合物的和易性也受温度的影响。因为环境温度的升高,水分蒸发及水化反应加快,坍落度损失也变快。因此施工中为保证一定的和易性,必须注意环境温度的变化,并采取相应的措施。4、影响和易性的主要因素(1)改善砂、石的级配(特别是石子的级配),也有利于砼质量的提高,但要增加备料工作;(2)尽量采用较粗大的砂、石;(3)尽可能降低砂率,通过试验采用合理砂率;有利于提高砼质量和节约水泥;(4)在砂率不变的条件下,适当增加砂石的用量,可减小拌合物的流动性。(5)混凝土拌合物坍落度太小时,保持水灰比不变,适当增加水泥浆用量,当坍落度太大,但粘聚性良好时,可保持砂率不变,适当增加砂、石用量;(6)掺外加剂或掺合料;

5、改善和易性的主要措施二、新拌砼的凝结时间(了解)新拌混凝土的凝结时间通常是用贯入阻力法进行测定的。仪器:贯入阻力仪方法:先用5mm筛孔的筛从拌合物中筛取砂浆,按一定方法装入规定的容器中,然后每隔一定时间测定砂浆贯入到一定深度时的贯入阻力。贯入阻力达到3.5MPa和28.0MPa的时间,分别是新拌混凝土的初凝和终凝时间。这是从实用角度人为划分的,实际上,贯入阻力达到3.5MPa时,混凝土还没有抗压强度,初凝时间表示的是新拌混凝土正常地搅拌、浇注和捣实的极限;贯入阻力达到8.0MPa时,抗压强度约为0.7MPa,终凝时间表示混凝土力学强度开始快速发展。三、塑性收缩(裂缝)和塑性沉降(裂缝)1、塑性收缩

新拌混凝土在浇注完成后,如果所处环境较干燥,混凝土的表面会较快地蒸发失水,当新拌混凝土的泌水速度低于水分的蒸发速度时,混凝土的表面会由于干燥产生塑性收缩,这时,混凝土的抗拉强度几乎为0,极易形成塑性收缩裂缝。因此,混凝土在浇注完成后,应特别注意表面的保湿养护,防止塑性收缩开裂。收缩裂缝的特点:不规则地出现于表层,通常不连贯,中间宽,两边渐细,且很少发展至边缘,严重时裂缝也能互相连通。如有钢筋,裂缝形式会有所变化。防治这种裂缝关键是搞好混凝土的早期养护。调整混凝土的配合比,特别是掺引气剂有助于减少收缩裂缝。处理:对这种裂缝的修补处理通常为涂刷水泥浆或低粘度聚合物,封堵裂缝防止水分侵入。2、塑性沉降新拌混凝土由于泌水会产生沉降,当混凝土的浇注深度较大时,顶部的混凝土会产生较大的沉降,这种沉降称为塑性沉降。塑性沉降受到阻碍时,例如钢筋,则会产生塑性沉降裂缝。塑性沉降裂缝:此类裂缝发生于施工后不久,混凝土浇筑后会产生沉降,当混凝土开始凝结时,如遇到钢筋或横向板连接螺栓等物阻止这种沉降,会产生裂缝,这种裂缝称为塑性沉陷裂缝。这种现象常发生在混凝土柱或其他窄长构件的边角部位。预防措施:可调整混凝土的配合比或掺用外加剂改善混凝土和易性,以避免产生这种裂缝。当裂缝刚出现,可立即重新振捣上部混凝土以消除。若混凝土已硬化,应采用封堵裂缝修补措施,保护钢筋。事实上,当混凝土刚出现裂缝,而尚未硬化时立即重新振捣效果更好。§6.2.2混凝土的强度混凝土的力学性质是判断硬化后混凝土质量的重要标准,包括强度和变形。强度是混凝土最重要的力学性质。混凝土强度与混凝土的其他性能关系密切,通常混凝土的强度越大,其刚度、不透水性、抗风化及耐蚀性也越高,通常用混凝土强度来评定和控制混凝土的质量。混凝土的强度包括:抗压强度、抗拉强度、抗弯强度、抗剪强度及与钢筋的粘结强度等。但主要是抗压强度、抗拉强度。一.混凝土立方体抗压强度按照《普通混凝土力学性能试验方法标准》(GB/T50081-2002),制作150mm×l50mm×l50mm的标准立方体试件,在标准条件(温度20℃±2℃,相对湿度95%以上)下,养护到28d龄期,所测得抗压强度值为混凝土立方体抗压强度,以fcu表示,可按下式计算:当采用非标准试件时,须乘以换算系数,见下表:试件种类试件尺寸,mm粗骨料最大粒径,mm换算系数标准试件150×150×150401.00非标准试件100×100×100300.95200×200×200601.05二、混凝土立方体抗压强度标准值及强度等级按照标准方法制作和养护的边长为150mm的立方体试件,在28天龄期,用标准试验方法测定的抗压强度总体分布中的一个值,强度低于该值的百分率不超过5%(即具有95%保证率的抗压强度)以N/mm2(即Mpa)计,以fcu,k表示。立方体抗压强度标准值是划分混凝土强度等级的依据。采用符号C(英文concrete)表示。分为:C15,C20,C25,C30,C35,C40,C45,C50,C55,C60,C65,C70,C75和C80等14个强度等级。方法:随机取样(具代表性)1、以3个试件为一组;连续抽n组(n≥25组,每组3块);作成标准试件,在标准条件下养护。2、测每组(3块)的抗压强度fcu,取其代表值:比如3块强度:18、16、15,若最大、最小值与中间值之差不大于中间值的0.15倍,则取三值平均值;若有一值超出,则取中间值;若二值均超出,视为无效。3、得到n个代表值,按从大到小排序。若100个强度代表值,当n=95,代表值为20.1Mpa,则fcu,k=20.1Mpa,其强度等级C20。三、混凝土轴心抗压强度混凝土的立方体抗压强度fcu用来评定强度等级,但它不能直接用来作为设计的依据。因为实际工程中钢筋混凝土构件形式大部分是棱柱形或圆柱形。在钢筋混凝土结构计算中,采用混凝土轴心抗压强度fck作为设计的依据。轴心抗压强度fck<立方体抗压强度fcu。试验表明:在立方体抗压强度fcu=10-55Mpa的范围内,fck≈0.7-0.8fcu。现行国家标准(GB/T50081—2002)规定,采用150mm×150mm×300mm的棱柱体作为标准试件,测定其轴心抗压强度。混凝土的轴心抗压强度可按下式计算:四、混凝土的抗拉强度混凝土抗拉强度较低,一般为抗压强度的1/10~1/20,且随着混凝土强度等级的提高,这个比值有所降低。因此,混凝土在工作时一般不依靠其抗拉强度。但抗拉强度对开裂现象有重要意义,在结构设计中抗拉强度是确定混凝土抗裂强度的重要指标。有时也用它来间接衡量混凝土与钢筋的粘结强度等。现行国家标准(GB/T50081—2002)规定,采用边长150mm的立方体作为标准试件,在立方体试件(或圆柱体)中心平面内用圆弧为垫条施加两个方向相反、均匀分布的压应力,当压力增大至一定程度时试件就沿此平面劈裂破坏,这样测得的强度称为劈裂抗拉强度。混凝土的劈裂抗拉强度(fts)可按下式计算:五、影响混凝土抗压强度的主要因素普通混凝土受力破坏一般出现在骨料和水泥石的界面上,即常见的粘结面破坏的形式。另外,当水泥石强度较低时,水泥石本身破坏也是常见的破坏形式。所以,混凝土强度主要取决于水泥石强度和骨料与水泥石间的粘结强度。而水泥石强度和粘结面强度又取决于水泥的实际强度、水灰比及骨料性质,也受施工质量、养护条件及龄期的影响。1、组成材料和配合比2、养护条件3、试验条件(1)水泥实际强度与水灰比

水泥实际强度和水灰比是决定混凝土强度最主要的因素。水灰比不变时,水泥实际强度越高,则硬化水泥石强度越大,对骨料的胶结力也就越强,配制成的混凝土强度也就愈高。水泥实际强度相同的情况下,水灰比愈小,水泥石的强度愈高,与骨料粘结力愈大,混凝土强度愈高。但水灰比过小,拌和物过于干稠,在一定的施工振捣条件下,混凝土不能被振捣密实,出现较多的蜂窝、孔洞,反将导致混凝土强度严重下降。1、组成材料和配合比图4.11混凝土强度与水灰比及灰水比的关系

(a)强度与水灰比的关系;(b)强度与灰水比的关系混凝土强度经验公式:根据工程实践经验,可建立混凝土强度与水泥实际强度及灰水比等因素之间的线性经验公式(又称鲍罗米公式):

式中:fcu——混凝土立方体抗压强度,Mpa;αa、αb——粗骨料回归系数(根据工程所使用的水泥和粗、细骨料通过试验建立的灰水比与混凝土强度关系式来确定。若无上述试验统计资料,可按《普通混凝土配合比计规程》JGJ55-2000,提供的αa,αb系统取用,对于碎石混凝土αa=0.46,αb=0.07;对于卵石混凝土αa=0.48,αb=0.33);C/W——灰水比;注意:鲍罗米公式仅适用于C60以下的混凝土。fce——水泥28d抗压强度实测值,Mpa。在无法取得水泥实测强度时,可用下式计算:式中:fce,g——水泥强度等级值,Mpa;γc——水泥强度等级值的富余系数,该值各地可按水泥品种、产地、等级统计得出。fce值也可根据3d强度或快测强度推定28d强度(2)骨料的影响骨料的表面状况影响水泥石与骨料的粘结,从而影响混凝土的强度。碎石表面粗糙,粘结力较大;卵石表面光滑,粘结力较小。因此,在配合比相同的条件下,碎石混凝土的强度比卵石混凝土的强度高。特别是在水灰比较低(<0.4)时,差异较明显。骨料的最大粒径对混凝土的强度也有影响,骨料的最大粒径愈大,混凝土的强度愈小,特别是对水灰比较低的中强和高强混凝土,骨料最大粒径的影响十分明显。如图4-12所示。(3)外加剂和掺合料在混凝土中掺入外加剂,可使混凝土获得早强和高强性能,混凝土中掺入早强剂,可显著提高早期强度;掺入减水剂可大幅度减少拌合用水量,在较低的水灰比下,混凝土仍能较好地成型密实,获得很高的28d强度。在混凝土中加入掺合料,可提高水泥石的密实度,改善水泥石与骨料的界面粘结强度,提高混凝土的长期强度。因此,在混凝土中掺入高效减水剂和掺合料是制备高强和高性能混凝土必需的技术措施。2、养护条件◆养护的温度和湿度◆龄期(养护时间)龄期是指混凝土在正常养护条件下所经历的时间。在正常养护的条件下,混凝土的强度将随龄期的增长而不断发展,最初7~14天内强度发展较快,以后逐渐变缓,28天达到设计强度。28天后强度仍在发展,其增长过程可延续数十年之久。3、试验条件对混凝土强度的影响

①试件尺寸

相同配合比的混凝土,试件的尺寸越小,测得的强度越高,反之亦然。试件尺寸影响的主要原因是:试件尺寸大时,内部孔隙、缺陷等出现的机率也越大,导致有效受力面积的减小及应力集中,从而引起强度的降低。我国标准规定采用150mm×150mm×150mm的立方体试件作为标准试件,当采用非标准的其它尺寸试件时,所测得的抗压强度应乘以下表的换算系数。

混凝土试件不同尺寸的强度换算系数表骨料最大粒径(mm)试件尺寸(mm)换算系数30100×100×1000.9540150×150×1501.060200×200×2001.05

②试件的形状当试件受压面积(a×a)相同,高度(h)不同时,高宽比(h/a)越大,抗压强度越小。原因:

环箍效应——这是由于试件受压时,试件受压面与试件承压板之间的摩擦力,对试件相对于承压板的横向膨胀起着约束作用,该约束有利于强度的提高。愈接近试件的端面,这种约束作用就愈大,在距端面大约的范围以外,约束作才消失。试件破坏后,其上下部分各呈现一个较完整的棱柱体,这就是这种约束作用的结果。通常称这种作用为环箍效应。

图:混凝土受压试验图:混凝土试件受压的环箍效应

③表面状态

试件表面有、无润滑剂,其对应的破坏形式不一,所测强度值大小不同。当试件受压面上有油脂类润滑剂时,试件受压时的环箍效应大大减小,试件将出现直裂破坏,测出的强度值也较低。④加荷速度

加荷速度较快时,材料变形的增长落后于荷载的增加,所测强度值偏高。当加荷速度超过1.0Mpa/s时,这种趋势更加显著。我国标准规定混凝土抗压强度的加荷速度为0.3~0.8MPa/s,且应连续均匀地加荷。提高混凝土强度的主要措施:1.在混凝土配合比相同的情况下,采用高强度等级水泥,混凝土强度越高。采用早强型水泥可提高混凝土的早期强度,有利于加快施工进度。2.减小水灰比,或采用用水量较少的干硬性砼。3.改进施工工艺,采用机械搅拌和机械振捣。4.采用合理砂率,以及级配合格、强度较高、质量良好的碎石;5.采用湿热处理养护混凝土。(1)、蒸汽养护:将混凝土放在温度低于1000C的常压蒸汽中进行养护。一般混凝土经过16~20h蒸汽养护,其强度可达正常条件下养护28d强度的70%~80%。(2)、蒸压养护:将静停8~10h的混凝土构件放在温度1750C、0.8MPa的蒸压锅中进行养护。6.掺入外加剂、掺合料。MagneticResonanceImaging磁共振成像发生事件作者或公司磁共振发展史1946发现磁共振现象BlochPurcell1971发现肿瘤的T1、T2时间长Damadian1973做出两个充水试管MR图像Lauterbur1974活鼠的MR图像Lauterbur等1976人体胸部的MR图像Damadian1977初期的全身MR图像

Mallard1980磁共振装置商品化1989

0.15T永磁商用磁共振设备中国安科

2003诺贝尔奖金LauterburMansfierd时间MR成像基本原理实现人体磁共振成像的条件:人体内氢原子核是人体内最多的物质。最易受外加磁场的影响而发生磁共振现象(没有核辐射)有一个稳定的静磁场(磁体)梯度场和射频场:前者用于空间编码和选层,后者施加特定频率的射频脉冲,使之形成磁共振现象信号接收装置:各种线圈计算机系统:完成信号采集、传输、图像重建、后处理等

人体内的H核子可看作是自旋状态下的小星球。自然状态下,H核进动杂乱无章,磁性相互抵消zMyx进入静磁场后,H核磁矩发生规律性排列(正负方向),正负方向的磁矢量相互抵消后,少数正向排列(低能态)的H核合成总磁化矢量M,即为MR信号基础ZZYYXB0XMZMXYA:施加90度RF脉冲前的磁化矢量MzB:施加90度RF脉冲后的磁化矢量Mxy.并以Larmor频率横向施进C:90度脉冲对磁化矢量的作用。即M以螺旋运动的形式倾倒到横向平面ABC在这一过程中,产生能量

三、弛豫(Relaxation)回复“自由”的过程

1.

纵向弛豫(T1弛豫):

M0(MZ)的恢复,“量变”高能态1H→低能态1H自旋—晶格弛豫、热弛豫

吸收RF光子能量(共振)低能态1H高能态1H

放出能量(光子,MRS)T1弛豫时间:

MZ恢复到M0的2/3所需的时间

T1愈小、M0恢复愈快T2弛豫时间:MXY丧失2/3所需的时间;T2愈大、同相位时间长MXY持续时间愈长MXY与ST1加权成像、T2加权成像

所谓的加权就是“突出”的意思

T1加权成像(T1WI)----突出组织T1弛豫(纵向弛豫)差别

T2加权成像(T2WI)----突出组织T2弛豫(横向弛豫)差别。

磁共振诊断基于此两种标准图像磁共振常规h检查必扫这两种标准图像.T1的长度在数百至数千毫秒(ms)范围T2值的长度在数十至数千毫秒(ms)范围

在同一个驰豫过程中,T2比T1短得多

如何观看MR图像:首先我们要分清图像上的各种标示。分清扫描序列、扫描部位、扫描层面。正常或异常的所在部位---即在同一层面观察、分析T1、T2加权像上信号改变。绝大部分病变T1WI是低信号、T2WI是高信号改变。只要熟悉扫描部位正常组织结构的信号表现,通常病变与正常组织不会混淆。一般的规律是T1WI看解剖,T2WI看病变。磁共振成像技术--图像空间分辨力,对比分辨力一、如何确定MRI的来源(一)层面的选择1.MXY产生(1H共振)条件

RF=ω=γB02.梯度磁场Z(GZ)

GZ→B0→ω

不同频率的RF

特定层面1H激励、共振

3.层厚的影响因素

RF的带宽↓

GZ的强度↑层厚↓〈二〉体素信号的确定1、频率编码2、相位编码

M0↑--GZ、RF→相应层面MXY----------GY→沿Y方向1H有不同ω

各1H同相位MXY旋进速度不同同频率一定时间后→→GX→沿X方向1H有不同ω沿Y方向不同1H的MXYMXY旋进频率不同位置不同(相位不同)〈三〉空间定位及傅立叶转换

GZ----某一层面产生MXYGX----MXY旋进频率不同

GY----MXY旋进相位不同(不影响MXY大小)

↓某一层面不同的体素,有不同频率、相位

MRS(FID)第三节、磁共振检查技术检查技术产生图像的序列名产生图像的脉冲序列技术名TRA、COR、SAGT1WT2WSETR、TE…….梯度回波FFE快速自旋回波FSE压脂压水MRA短TR短TE--T1W长TR长TE--T2W增强MR最常用的技术是:多层、多回波的SE(spinecho,自旋回波)技术磁共振扫描时间参数:TR、TE磁共振扫描还有许多其他参数:层厚、层距、层数、矩阵等序列常规序列自旋回波(SE),快速自旋回波(FSE)梯度回波(FE)反转恢复(IR),脂肪抑制(STIR)、水抑制(FLAIR)高级序列水成像(MRCP,MRU,MRM)血管造影(MRA,TOF2D/3D)三维成像(SPGR)弥散成像(DWI)关节运动分析是一种成像技术而非扫描序列自旋回波(SE)必扫序列图像清晰显示解剖结构目前只用于T1加权像快速自旋回波(FSE)必扫序列成像速度快多用于T2加权像梯度回波(GE)成像速度快对出血敏感T2加权像水抑制反转恢复(IR)水抑制(FLAIR)抑制自由水梗塞灶显示清晰判断病灶成份脂肪抑制反转恢复(IR)脂肪抑制(STIR)抑制脂肪信号判断病灶成分其它组织显示更清晰血管造影(MRA)无需造影剂TOF法PC法MIP投影动静脉分开显示水成像(MRCP,MRU,MRM)含水管道系统成像胆道MRCP泌尿路MRU椎管MRM主要用于诊断梗阻扩张超高空间分辨率扫描任意方位重建窄间距重建技术大大提高对小器官、小病灶的诊断能力三维梯度回波(SPGR) 早期诊断脑梗塞

弥散成像MRI的设备一、信号的产生、探测接受1.磁体(Magnet):静磁场B0(Tesla,T)→组织净磁矩M0

永磁型(permanentmagnet)常导型(resistivemagnet)超导型(superconductingmagnet)磁体屏蔽(magnetshielding)2.梯度线圈(gradientcoil):

形成X、Y、Z轴的磁场梯度功率、切换率3.射频系统(radio-frequencesystem,RF)

MR信号接收二、信号的处理和图象显示数模转换、计算机,等等;MRI技术的优势1、软组织分辨力强(判断组织特性)2、多方位成像3、流空效应(显示血管)4、无骨骼伪影5、无电离辐射,无碘过敏6、不断有新的成像技术MRI技术的禁忌证和限度1.禁忌证

体内弹片、金属异物各种金属置入:固定假牙、起搏器、血管夹、人造关节、支架等危重病人的生命监护系统、维持系统不能合作病人,早期妊娠,高热及散热障碍2.其他钙化显示相对较差空间分辨较差(体部,较同等CT)费用昂贵多数MR机检查时间较长1.病人必须去除一切金属物品,最好更衣,以免金属物被吸入磁体而影响磁场均匀度,甚或伤及病人。2.扫描过程中病人身体(皮肤)不要直接触碰磁体内壁及各种导线,防止病人灼伤。3.纹身(纹眉)、化妆品、染发等应事先去掉,因其可能会引起灼伤。4.病人应带耳塞,以防听力损伤。扫描注意事项颅脑MRI适应症颅内良恶性占位病变脑血管性疾病梗死、出血、动脉瘤、动静脉畸形(AVM)等颅脑外伤性疾病脑挫裂伤、外伤性颅内血肿等感染性疾病脑脓肿、化脓性脑膜炎、病毒性脑炎、结核等脱髓鞘性或变性类疾病多发性硬化(MS)等先天性畸形胼胝体发育不良、小脑扁桃体下疝畸形等脊柱和脊髓MRI适应证1.肿瘤性病变椎管类肿瘤(髓内、髓外硬膜内、硬膜外),椎骨肿瘤(转移性、原发性)2.炎症性疾病脊椎结核、骨髓炎、椎间盘感染、硬膜外脓肿、蛛网膜炎、脊髓炎等3.外伤骨折、脱位、椎间盘突出、椎管内血肿、脊髓损伤等4.脊柱退行性变和椎管狭窄症椎间盘变性、膨隆、突出、游离,各种原因椎管狭窄,术后改变,5.脊髓血管畸形和血管瘤6.脊髓脱髓鞘疾病(如MS),脊髓萎缩7.先天性畸形胸部MRI适应证呼吸系统对纵隔及肺门区病变显示良好,对肺部结构显示不如CT。胸廓入口病变及其上下比邻关系纵隔肿瘤和囊肿及其与大血管的关系其他较CT无明显优越性心脏及大血管大血管病变各类动脉瘤、腔静脉血栓等心脏及心包肿瘤,心包其他病变其他(如先心、各种心肌病等)较超声心动图无优势,应用不广腹部MRI适应证主要用于部分实质性器官的肿瘤性病变肝肿瘤性病变,提供鉴别信息胰腺肿瘤,有利小胰癌、胰岛细胞癌显示宫颈、宫体良恶性肿瘤及分期等,先天畸形肿瘤的定位(脏器上下缘附近)、分期胆道、尿路梗阻和肿瘤,MRCP,MRU直肠肿瘤骨与关节MRI适应证X线及CT的后续检查手段--钙质显示差和空间分辨力部分情况可作首选:1.累及骨髓改变的骨病(早期骨缺血性坏死,早期骨髓炎、骨髓肿瘤或侵犯骨髓的肿瘤)2.结构复杂关节的损伤(膝、髋关节)3.形状复杂部位的检查(脊柱、骨盆等)软件登录界面软件扫描界面图像浏览界面胶片打印界面报告界面报告界面2合理应用抗菌药物预防手术部位感染概述外科手术部位感染的2/3发生在切口医疗费用的增加病人满意度下降导致感染、止血和疼痛一直是外科的三大挑战,止血和疼痛目前已较好解决感染仍是外科医生面临的重大问题,处理不当,将产生严重后果外科手术部位感染占院内感染的14%~16%,仅次于呼吸道感染和泌尿道感染,居院内感染第3位严重手术部位的感染——病人的灾难,医生的梦魇

预防手术部位感染(surgicalsiteinfection,SSI)

手术部位感染的40%–60%可以预防围手术期使用抗菌药物的目的外科医生的困惑★围手术期应用抗生素是预防什么感染?★哪些情况需要抗生素预防?★怎样选择抗生素?★什么时候开始用药?★抗生素要用多长时间?定义:指发生在切口或手术深部器官或腔隙的感染分类:切口浅部感染切口深部感染器官/腔隙感染一、SSI定义和分类二、SSI诊断标准——切口浅部感染

指术后30天内发生、仅累及皮肤及皮下组织的感染,并至少具备下述情况之一者:

1.切口浅层有脓性分泌物

2.切口浅层分泌物培养出细菌

3.具有下列症状体征之一:红热,肿胀,疼痛或压痛,因而医师将切口开放者(如培养阴性则不算感染)

4.由外科医师诊断为切口浅部SSI

注意:缝线脓点及戳孔周围感染不列为手术部位感染二、SSI诊断标准——切口深部感染

指术后30天内(如有人工植入物则为术后1年内)发生、累及切口深部筋膜及肌层的感染,并至少具备下述情况之一者:

1.切口深部流出脓液

2.切口深部自行裂开或由医师主动打开,且具备下列症状体征之一:①体温>38℃;②局部疼痛或压痛

3.临床或经手术或病理组织学或影像学诊断,发现切口深部有脓肿

4.外科医师诊断为切口深部感染

注意:感染同时累及切口浅部及深部者,应列为深部感染

二、SSI诊断标准—器官/腔隙感染

指术后30天内(如有人工植入物★则术后1年内)、发生在手术曾涉及部位的器官或腔隙的感染,通过手术打开或其他手术处理,并至少具备以下情况之一者:

1.放置于器官/腔隙的引流管有脓性引流物

2.器官/腔隙的液体或组织培养有致病菌

3.经手术或病理组织学或影像学诊断器官/腔隙有脓肿

4.外科医师诊断为器官/腔隙感染

★人工植入物:指人工心脏瓣膜、人工血管、人工关节等二、SSI诊断标准—器官/腔隙感染

不同种类手术部位的器官/腔隙感染有:

腹部:腹腔内感染(腹膜炎,腹腔脓肿)生殖道:子宫内膜炎、盆腔炎、盆腔脓肿血管:静脉或动脉感染三、SSI的发生率美国1986年~1996年593344例手术中,发生SSI15523次,占2.62%英国1997年~2001年152所医院报告在74734例手术中,发生SSI3151例,占4.22%中国?SSI占院内感染的14~16%,仅次于呼吸道感染和泌尿道感染三、SSI的发生率SSI与部位:非腹部手术为2%~5%腹部手术可高达20%SSI与病人:入住ICU的机会增加60%再次入院的机会是未感染者的5倍SSI与切口类型:清洁伤口 1%~2%清洁有植入物 <5%可染伤口<10%手术类别手术数SSI数感染率(%)小肠手术6466610.2大肠手术7116919.7子宫切除术71271722.4肝、胆管、胰手术1201512.5胆囊切除术8222.4不同种类手术的SSI发生率:三、SSI的发生率手术类别SSI数SSI类别(%)切口浅部切口深部器官/腔隙小肠手术6652.335.412.3大肠手术69158.426.315.3子宫切除术17278.813.57.6骨折开放复位12379.712.28.1不同种类手术的SSI类别:三、SSI的发生率延迟愈合疝内脏膨出脓肿,瘘形成。需要进一步处理这里感染将导致:延迟愈合疝内脏膨出脓肿、瘘形成需进一步处理四、SSI的后果四、SSI的后果在一些重大手术,器官/腔隙感染可占到1/3。SSI病人死亡的77%与感染有关,其中90%是器官/腔隙严重感染

——InfectControlandHospEpidemiol,1999,20(40:247-280SSI的死亡率是未感染者的2倍五、导致SSI的危险因素(1)病人因素:高龄、营养不良、糖尿病、肥胖、吸烟、其他部位有感染灶、已有细菌定植、免疫低下、低氧血症五、导致SSI的危险因素(2)术前因素:术前住院时间过长用剃刀剃毛、剃毛过早手术野卫生状况差(术前未很好沐浴)对有指征者未用抗生素预防五、导致SSI的危险因素(3)手术因素:手术时间长、术中发生明显污染置入人工材料、组织创伤大止血不彻底、局部积血积液存在死腔和/或失活组织留置引流术中低血压、大量输血刷手不彻底、消毒液使用不当器械敷料灭菌不彻底等手术特定时间是指在大量同种手术中处于第75百分位的手术持续时间其因手术种类不同而存在差异超过T越多,SSI机会越大五、导致SSI的危险因素(4)SSI危险指数(美国国家医院感染监测系统制定):病人术前已有≥3种危险因素污染或污秽的手术切口手术持续时间超过该类手术的特定时间(T)

(或一般手术>2h)六、预防SSI干预方法根据指南使用预防性抗菌药物正确脱毛方法缩短术前住院时间维持手术患者的正常体温血糖控制氧疗抗菌素的预防/治疗预防

在污染细菌接触宿主手术部位前给药治疗

在污染细菌接触宿主手术部位后给药

防患于未然六、预防SSI干预方法

——抗菌药物的应用115预防和治疗性抗菌素使用目的:清洁手术:防止可能的外源污染可染手术:减少粘膜定植细菌的数量污染手术:清除已经污染宿主的细菌六、预防SSI干预方法

——抗菌药物的应用116需植入假体,心脏手术、神外手术、血管外科手术等六、预防SSI干预方法

——抗菌药物的应用预防性抗菌素使用指征:可染伤口(Clean-contaminatedwound)污染伤口(Contaminatedwound)清洁伤口(Cleanwound)但存在感染风险六、预防SSI干预方法

——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?六、预防SSI干预方法

——抗菌药物的应用预防性抗菌素显示有效的手术有:妇产科手术胃肠道手术(包括阑尾炎)口咽部手术腹部和肢体血管手术心脏手术骨科假体植入术开颅手术某些“清洁”手术六、预防SSI干预方法

——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?六、预防SSI干预方法

——抗菌药物的应用

理想的给药时间?目前还没有明确的证据表明最佳的给药时机研究显示:切皮前45~75min给药,SSI发生率最低,且不建议在切皮前30min内给药影响给药时间的因素:所选药物的代谢动力学特性手术中污染发生的可能时间病人的循环动力学状态止血带的使用剖宫产细菌在手术伤口接种后的生长动力学

手术过程

012345671hr2hrs6hrs1day3-5days细菌数logCFU/ml六、预防SSI干预方法

——抗菌药物的应用122术后给药,细菌在手术伤口接种的生长动力学无改变

手术过程抗生素血肿血浆六、预防SSI干预方法

——抗菌药物的应用Antibioticsinclot

手术过程

血浆中抗生素予以抗生素血块中抗生素血浆术前给药,可以有效抑制细菌在手术伤口的生长六、预防SSI干预方法

——抗菌药物的应用124ClassenDC,etal..NEnglJMed1992;326:281切开前时间切开后时间予以抗生素切开六、预防SSI干预方法

——抗菌药物的应用不同给药时间,手术伤口的感染率不同NEJM1992;326:281-6投药时间感染数(%)相对危险度(95%CI)早期(切皮前2-24h)36914(3.8%)6.7(2.9-14.7)4.3手术前(切皮前45-75min)170810(0.9%)1.0围手术期(切皮后3h内)2824(1.4%)2.4(0.9-7.9) 2.1手术后(切皮3h以上)48816(3.3%)5.8(2.6-12.3)

5.8全部284744(1.5%)似然比病人数六、预防SSI干预方法

——抗菌药物的应用结论:抗生素在切皮前45-75min或麻醉诱导开始时给药,预防SSI效果好126六、预防SSI干预方法

——抗菌药物的应用切口切开后,局部抗生素分布将受阻必须在切口切开前给药!!!抗菌素应在切皮前45~75min给药六、预防SSI干预方法

——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?有效安全杀菌剂半衰期长相对窄谱廉价六、预防SSI干预方法

——抗菌药物的应用抗生素的选择原则:各类手术最易引起SSI的病原菌及预防用药选择六、预防SSI干预方法

——抗菌药物的应用

手术最可能的病原菌预防用药选择胆道手术革兰阴性杆菌,厌氧菌头孢呋辛或头孢哌酮或

(如脆弱类杆菌)头孢曲松阑尾手术革兰阴性杆菌,厌氧菌头孢呋辛或头孢噻肟;

(如脆弱类杆菌)+甲硝唑结、直肠手术革兰阴性杆菌,厌氧菌头孢呋辛或头孢曲松或

(如脆弱类杆菌)头孢噻肟;+甲硝唑泌尿外科手术革兰阴性杆菌头孢呋辛;环丙沙星妇产科手术革兰阴性杆菌,肠球菌头孢呋辛或头孢曲松或

B族链球菌,厌氧菌头孢噻肟;+甲硝唑莫西沙星(可单药应用)注:各种手术切口感染都可能由葡萄球菌引起六、预防SSI干预方法

——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?六、预防SSI干预方法

——抗菌药物的应用单次给药还是多次给药?没有证据显示多次给药比单次给药好伤口关闭后给药没有益处多数指南建议24小时内停药没有必要维持抗菌素治疗直到撤除尿管和引流管手术时间延长或术中出血量较大时可重复给药细菌污染定植感染一次性用药用药24h用药4872h数小时从十数小时到数十小时六、预防SSI干预方法

——抗菌药物的应用用药时机不同,用药期限也应不同短时间预防性应用抗生素的优点:六、预防SSI干预方法

——抗菌药物的应用减少毒副作用不易产生耐药菌株不易引起微生态紊乱减轻病人负担可以选用单价较高但效果较好的抗生素减少护理工作量药品消耗增加抗菌素相关并发症增加耐药抗菌素种类增加易引起脆弱芽孢杆菌肠炎MRSA(耐甲氧西林金黄色葡萄球菌)定植六、预防SSI干预方法

——抗菌药物的应用延长抗菌素使用的缺点:六、预防SSI干预方法

——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?正确的给药方法:六、预防SSI干预方法

——抗菌药物的应用应静脉给药,2030min滴完肌注、口服存在吸收上的个体差异,不能保证血液和组织的药物浓度,不宜采用常用的-内酰胺类抗生素半衰期为12h,若手术超过34h,应给第2个剂量,必要时还可用第3次可能有损伤肠管的手术,术前用抗菌药物准备肠道局部抗生素冲洗创腔或伤口无确切预防效果,不予提倡不应将日常全身性应用的抗生素应用于伤口局部(诱发高耐药)必要时可用新霉素、杆菌肽等抗生素缓释系统(PMMA—青大霉素骨水泥或胶原海绵)局部应用可能有一定益处六、预防SSI干预方法

——抗菌药物的应用不提倡局部预防应用抗生素:时机不当时间太长选药不当,缺乏针对性六、预防SSI干预方法

——抗菌药物的应用预防用药易犯的错误:在开刀前45-75min之内投药按最新临床指南选药术后24小时内停药择期手术后一般无须继续使用抗生素大量对比研究证明,手术后继续用药数次或数天并不能降低手术后感染率若病人有明显感染高危因素或使用人工植入物,可再用1次或数次小结预防SSI干预方法

——正确的脱毛方法用脱毛剂、术前即刻备皮可有效减少SSI的发生手术部位脱毛方法与切口感染率的关系:备皮方法 剃毛备皮 5.6%

脱毛0.6%备皮时间 术前24小时前 >20%

术前24小时内 7.1%

术前即刻 3.1%方法/时间 术前即刻剪毛 1.8%

前1晚剪/剃毛 4.0%THANKYOUMagneticResonanceImagingPART01磁共振成像发生事件作者或公司磁共振发展史1946发现磁共振现象BlochPurcell1971发现肿瘤的T1、T2时间长Damadian1973做出两个充水试管MR图像Lauterbur1974活鼠的MR图像Lauterbur等1976人体胸部的MR图像Damadian1977初期的全身MR图像

Mallard1980磁共振装置商品化1989

0.15T永磁商用磁共振设备中国安科

2003诺贝尔奖金LauterburMansfierd时间PART02MR成像基本原理实现人体磁共振成像的条件:人体内氢原子核是人体内最多的物质。最易受外加磁场的影响而发生磁共振现象(没有核辐射)有一个稳定的静磁场(磁体)梯度场和射频场:前者用于空间编码和选层,后者施加特定频率的射频脉冲,使之形成磁共振现象信号接收装置:各种线圈计算机系统:完成信号采集、传输、图像重建、后处理等

人体内的H核子可看作是自旋状态下的小星球。自然状态下,H核进动杂乱无章,磁性相互抵消zMyx进入静磁场后,H核磁矩发生规律性排列(正负方向),正负方向的磁矢量相互抵消后,少数正向排列(低能态)的H核合成总磁化矢量M,即为MR信号基础ZZYYXB0XMZMXYA:施加90度RF脉冲前的磁化矢量MzB:施加90度RF脉冲后的磁化矢量Mxy.并以Larmor频率横向施进C:90度脉冲对磁化矢量的作用。即M以螺旋运动的形式倾倒到横向平面ABC在这一过程中,产生能量

三、弛豫(Relaxation)回复“自由”的过程

1.

纵向弛豫(T1弛豫):

M0(MZ)的恢复,“量变”高能态1H→低能态1H自旋—晶格弛豫、热弛豫

吸收RF光子能量(共振)低能态1H高能态1H

放出能量(光子,MRS)T1弛豫时间:

MZ恢复到M0的2/3所需的时间

T1愈小、M0恢复愈快T2弛豫时间:MXY丧失2/3所需的时间;T2愈大、同相位时间长MXY持续时间愈长MXY与ST1加权成像、T2加权成像

所谓的加权就是“突出”的意思

T1加权成像(T1WI)----突出组织T1弛豫(纵向弛豫)差别

T2加权成像(T2WI)----突出组织T2弛豫(横向弛豫)差别。

磁共振诊断基于此两种标准图像磁共振常规h检查必扫这两种标准图像.T1的长度在数百至数千毫秒(ms)范围T2值的长度在数十至数千毫秒(ms)范围

在同一个驰豫过程中,T2比T1短得多

如何观看MR图像:首先我们要分清图像上的各种标示。分清扫描序列、扫描部位、扫描层面。正常或异常的所在部位---即在同一层面观察、分析T1、T2加权像上信号改变。绝大部分病变T1WI是低信号、T2WI是高信号改变。只要熟悉扫描部位正常组织结构的信号表现,通常病变与正常组织不会混淆。一般的规律是T1WI看解剖,T2WI看病变。磁共振成像技术--图像空间分辨力,对比分辨力一、如何确定MRI的来源(一)层面的选择1.MXY产生(1H共振)条件

RF=ω=γB02.梯度磁场Z(GZ)

GZ→B0→ω

不同频率的RF

特定层面1H激励、共振

3.层厚的影响因素

RF的带宽↓

GZ的强度↑层厚↓〈二〉体素信号的确定1、频率编码2、相位编码

M0↑--GZ、RF→相应层面MXY----------GY→沿Y方向1H有不同ω

各1H同相位MXY旋进速度不同同频率一定时间后→→GX→沿X方向1H有不同ω沿Y方向不同1H的MXYMXY旋进频率不同位置不同(相位不同)〈三〉空间定位及傅立叶转换

GZ----某一层面产生MXYGX----MXY旋进频率不同

GY----MXY旋进相位不同(不影响MXY大小)

↓某一层面不同的体素,有不同频率、相位

MRS(FID)第三节、磁共振检查技术检查技术产生图像的序列名产生图像的脉冲序列技

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论