版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省清远市博爱学校2021年高二数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知、是双曲线的两焦点,以线段为边作正三角形,若边的中点在双曲线上,则双曲线的离心率是
(
)A.
B.
C.
D.参考答案:D略2.某次数学成绩~,显示,则 A.
B.
C.
D.参考答案:A3.
(
)
A、
B、
C、
D、参考答案:D略4.用反证法证明某命题时,对其结论:“自然数中恰有一个偶数”正确的反设为()A.都是奇数B.都是偶数C.中至少有两个偶数D.中至少有两个偶数或都是奇数10.计算机中常用的十六进制是逢16进1的记数制,采用数字0-9和字母A-F共16个记数符号;这些符号与十进制的数的对应关系如下表:十六进制0123456789ABCDEF十进制0123456789101112131415例如,用十六进制表示:,则A.
B.
C.
D.参考答案:B略5.已知函数的图象为C,为了得到函数的图象只需把C上所有的点(
)A.向右平行移动个单位长度 B.向左平行移动个单位长度C.向右平行移动个单位长度 D.向左平行移动个单位长度参考答案:D6.等差数列中,,则
(
)A.
B.
C.
0
D.
参考答案:B根据等差中项的性质可知,等差数列中,,而对于故可知选B.7.设随机变量,则(
)A. B. C. D.3参考答案:B【分析】根据二项分布方差公式求得结果.【详解】
本题正确选项:【点睛】本题考查二项分布中方差的求解,属于基础题.8.样本中共有5个个体,其值分别是,若该样本的平均值为1,则样本方差为()A.
B.
C.
D.2参考答案:D9.计算机执行下面的程序段后,输出的结果是(
)A.
B.
C.
D.参考答案:B10.某体育馆第一排有5个座位,第二排有7个座位,第三排有9个座位,依次类推,那么第十五排有()个座位。
A.27
B.33
C.45
D.51参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.如图,测量河对岸的塔高时,可以选与塔底在同一水平面内的两个测点与.测得米,并在点
测得塔顶的仰角为,则塔高=
米.
参考答案:12.2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有
(用数字回答)参考答案:36
略13.在研究关于曲线的性质过程中,有同学得到了如下结论①曲线关于原点、轴对称②曲线的渐近线为③曲线的两个顶点分别为④曲线上的点到原点的最近距离为2.上述判断正确的编号为__________.参考答案:①③④略14.若k∈R,则“k>3”是“方程=1表示双曲线”的
条件.(填“充分不必要、必要不充分、充要、既不充分也不必要”条件)参考答案:充分不必要条件15.记等差数列的前n项的和为,利用倒序求和的方法得:;类似地,记等比数列的前n项的积为,且,试类比等差数列求和的方法,将表示成首项、末项与项数n的一个关系式,即=
.参考答案:16.三个数638,522,406的最大公约数是.
参考答案:5817.已知双曲线上有一点,若满足,则此双曲线的离心率是__________.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.一个口袋中装有大小形状完全相同的红色球个、黄色球个、蓝色球个.现进行从口袋中摸球的游戏:摸到红球得分、摸到黄球得分、摸到蓝球得分.若从这个口袋中随机地摸出个球,恰有一个是黄色球的概率是.⑴求的值;⑵从口袋中随机摸出个球,设表示所摸球的得分之和,求的分布列和数学期望.参考答案:解:⑴由题设,即,解得;
⑵取值为.
则,,,,
的分布列为:
故.
略19.如图,三棱柱中,侧棱底面,且各棱长均相等,D、E、F分别为棱AB、BC、的中点.(1)证明:.(2)证明:平面.(3)求直线BC与平面所成角的正弦值.参考答案:略20.已知椭圆中心在原点,焦点在x轴上,长轴长等于12,离心率为.(1)求椭圆的标准方程;(2)过椭圆左顶点作直线,若动点M到椭圆右焦点的距离比它到直线的距离小4,求点M的轨迹方程.参考答案:21.在直角坐标系xOy中,曲线C1的参数方程为(为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(1)求曲线C1的普通方程和C2的直角坐标方程;(2)已知曲线C3的极坐标方程为,点A是曲线C3与C1的交点,点B是曲线C3与C2的交点,A,B均异于原点O,且,求的值.参考答案:(1);(2).【分析】(1)根据曲线的参数方程,消去参数,即可得到的普通方程;由两边同时乘以,即可得到,进而可得的直角坐标方程;(2)根据的直角坐标方程先得到其极坐标方程,将分别代入和的极坐标方程,求出和,再由,即可求出结果.【详解】解:(1)由消去参数,得的普通方程为.由,得,又,,所以的直角坐标方程为.(2)由(1)知曲线的普通方程为,所以其极坐标方程为.设点,的极坐标分别为,,则,,所以,所以,即,解得,又,所以.【点睛】本题主要考查极坐标方程与直角坐标方程的互化、以及参数方程与普通方程的互化,熟记公式即可,属于常考题型.22.已知椭圆C:的离心率为,F1,F2是椭圆的两个焦点,P是椭圆上任意一点,且△PF1F2的周长是8+2(1)求椭圆C的方程;(2)设圆T:(x﹣t)2+y2=,过椭圆的上顶点作圆T的两条切线交椭圆于E、F两点,当圆心在x轴上移动且t∈(1,3)时,求EF的斜率的取值范围.参考答案:考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)由椭圆离心率得到a,c的关系,再由△PF1F2的周长是得a,c的另一关系,联立求得a,c的值,代入隐含条件求得b,则椭圆方程可求;(2)椭圆的上顶点为M(0,1),设过点M与圆T相切的直线方程为y=kx+1,由圆心到切线距离等于半径得到关于切线斜率的方程,由根与系数关系得到,再联立一切线方程和椭圆方程,求得E的坐标,同理求得F坐标,另一两点求斜率公式得到kEF=.然后由函数单调性求得EF的斜率的范围.解答: 解:(1)由,即,可知a=4b,,∵△PF1F2的周长是,∴,∴a=4,b=1,所求椭圆方程为;(2)椭圆的上顶点为M(0,1),设过点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年专利许可合同:某企业使用某专利技术
- 2024年建筑劳务队安全生产协议
- 2024年度智能家居系统采购合同
- 2024年度城市基础设施建设与管理协议
- 2024证券投资基金基金合同范例
- 2024年国际石油天然气开采销售合同
- 2024医疗耗材生产原料采购与供应合同
- 2024年创新型企业孵化合作框架协议
- 保安员述职报告范文(7篇)
- 2024年度项目融资合同融资金额及还款方式
- 学前教育论文范文8000字(通用九篇)
- 小学数学北师大五年级上册数学好玩 图形中的规律-
- 《富饶的西沙群岛》说课稿(优秀3篇)
- 墓碑碑文范文(通用十四篇)
- 大象版一年级科学上册全册教案
- 5000字论文范文(推荐十篇)
- 教案评分标准
- 中药饮片处方点评表
- 《节能监察的概念及其作用》
- 综合布线系统竣工验收表
- 蔬菜会员卡策划营销推广方案多篇
评论
0/150
提交评论