版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
了解基本立体的投影规律;理解基本立体上点、线、面的关系,进一步增强空间思维能力;掌握基本立体及其简单截切后的投影图绘制基本方法,为组合体打基础。第三章基本体及其表面交线能够正确绘出各基本体的三视图;能够在基本体表面上找点、找线;绘制简单截切后的基本体的三视图。知识目标:能力目标:棱柱棱锥圆柱圆环圆锥球第三章基本体及其表面交线第二节回转体第一节平面体第三节截交线第四节基本体及带切口基本体的尺寸标注第三章基本体及其表面的交线
常见的基本几何体平面基本体曲面基本体1.棱柱
由两个底面和若干侧棱面组成。侧棱面与侧棱面的交线叫侧棱线,侧棱线相互平行。上下底面为正多边形的直棱柱称做正棱柱。一、棱柱的投影第一节平面体立体位置的摆放:让立体尽量多的平面为特殊位置平面2.正六棱柱的三视图一、棱柱的投影位置摆放:顶面和底面平行于H面,前、后两侧面平行于V面作图步骤:①作三视图中的中心线。②作最能反映形状、特征的图形。③在V面、W面上作顶面、底面积聚投影。④侧面的投影。2.正六棱柱的三视图一、棱柱的投影①作三视图中的中心线②作最能反映形状、特征的图形③作顶面、底面积聚投影④侧面的投影OXZYWYHb(c)a(d)e(f)正三棱柱的三视图a"d"b"(e")c"(f")b'a'e'c'd'f'BECDFAOXZYWYHa"d"b"(e")c"(f")b'a'e'c'd'f'当点属于几何体的某个表面时,则该点的投影必在它所从属表面的各同面投影范围内。若该表面的投影可见,则该点同面投影也可见;反之为不可见。3.棱柱表面的点3.棱柱表面的点a"a'a(b")(b)(b')二、棱锥1.棱锥
由一个底面和若干侧棱面组成。侧棱线交于有限远的一点——锥顶。底面为正多边形的叫正棱锥。
2.作图步骤:①作三视图中的中心线。②作最能反映形状、特征的图形。③在V面、W面上作底面积聚投影。④顶点的投影。⑤侧面的投影。3.棱锥的三视图①作三视图中的中心线②作最能反映形状、特征的图形③在V面、W面上作底面积聚投影④顶点的投影
ss
s⑤侧面的投影4.属于棱锥表面上的点
正三棱锥的表面有特殊位置平面,也有一般位置平面。属于特殊位置平面的点的投影,可利用该平面的积聚性作图。属于一般位置平面的点投影,可通过在平面上作辅助线的方法求得,称为辅助直线法。HVWXYZabss"b"a"a's'b'ASBCc4.属于棱锥表面上的点4.属于棱锥表面上的点ⅠM1m1'm'm"m'mm"4.属于棱锥表面上的点第二节回转体2023/7/27母线素线回转轴
母线AB绕回转轴线OO旋转的运动轨迹形成回转面,母线AB上任一点D的运动轨迹为一垂直于轴线OO的圆。纬圆回转面及其性质2023/7/27回转体(面)的形成2023/7/27OO顶圆素线赤道圆喉圆纬圆底圆母线轴线图2-41回转面的术语曲面立体是由曲面或曲面和平面所围成。回转体是曲面立体中最有规律的一种立体。绘制它们的投影时,由于它们的表面没有明显的棱线,绘制曲面立体的投影,就是绘制组成曲面立体的所有曲面或曲面与平面的投影,曲面的投影是绘制曲面可见与不可见的分界线。
回转体圆柱的形成一、圆柱及其表面的点2023/7/27一、圆柱及其表面的点
形成:圆柱面可看作直线绕与它平行的轴线旋转而成。
视图分析:圆柱的投影一个是圆,另二个视图是两个全等的矩形线框。构成:圆柱体由圆柱面、顶面、底面所围成。一、圆柱及其表面的点①作三视图中的中心线②作最能反映形状、特征的图形③在V面、W面上作顶面、底面积聚投影④作圆柱面的投影a'aa"分析圆柱轮廓素线的投影2023/7/27()()A(D)CB圆柱表面上取点特殊点2023/7/27圆锥的形成二.圆锥体及其表面的点2023/7/27二.圆锥体及其表面的点
形成:圆锥面可看作直线绕与它相交的轴线旋转而成。
视图分析:圆锥一个视图是圆,另二个视图是两个全等的三角形线框。构成:圆锥体由圆锥面,底面(平面)所围成。二.圆锥体及其表面的点①作三视图中的中心线②作最能反映形状、特征的图形③在V面、W面上作底面积聚投影④顶点的投影s'ss"⑤圆锥面的投影m΄m(m˝)辅助平面法最左最右最前最后圆锥体表面上取点1.纬圆法2.素线法前半锥可见(b’)a’b”a’b”(a”)YYBA2023/7/27圆球的形成三、圆球及其表面的点2023/7/27三、圆球及其表面的点
形成:圆母线绕直径旋转而成。
视图分析:构成:球由曲面所围成。
三个视图分别为三个和圆球的直径相等的圆,它们分别是圆球三个方向轮廓线的投影。三、圆球及其表面的点①作三视图中的中心线作图步骤:②作H面投影圆③作V面投影圆④作W面投影圆kk(k)圆球体表面上取点a’a”(b”)(b)a(b’)组合回转体球环锥柱
nk’m’kn’m返回2023/7/27截平面——用以截切物体的平面。截交线——截平面与物体表面的交线。截断面——因截平面的截切,在物体上形成的平面。第三节截交线截交线——平面与立体相交,切割立体后在立体表面形成的交线基本平面几何体的截交线——平面与平面相交基本曲面几何体的截交线——平面与曲面相交截交线
一、截交线的性质:(1)截交线是截平面与立体表面的共有线;(2)由于任何立体都有一定大小和形状,截交线一定是闭合的平面图形。平面截切体的画图求截交线的两种方法:★求各棱线与截平面的交点→棱线法。★求各棱面与截平面的交线→棱面法。关键是正确地画出截交线的投影。1.截交线的作图步骤:分析:确定截交线的形状:由截平面与立体的相对截切位置判断。截交线的投影特性:截平面与投影面的相对位置。作图:从最有特征的图形作图,分别求出截平面与棱面的交线,并连接成多边形。二、平面立体的截交线确定截交线的形状确定截交线的投影特性2.棱锥的截交线3.棱柱的截交线例1、求如图所示三棱锥被正垂面所截切,求作截交线的水平投影和侧面投影。平面与三棱锥相交s’a’b’c’c”a”b”sPvs”(1)求Pv与s’a’、s’b’、s’c’的交点1’、2’、3’为截平面与各棱线的交点Ⅰ、Ⅱ、Ⅲ的正面投影。1’2’3’(2)根据线上取点的方法,求出1、2、3和1”、2”、3”。11”2”23(3)连接各点的同面投影即等截交线的三个投影。(4)补全棱线的投影。3”具体步骤如下:1’2’3’(4’)1”3”4”1243例2求做立体被截切后的投影例3:求四棱锥被截切后的俯视图和左视图。321(4)1●2●4●3●1●2●4●★空间分析交线的形状?3●★投影分析★求截交线★分析棱线的投影★检查尤其注意检查截交线投影的类似性截平面与体的几个棱面相交?截交线在俯、左视图上的形状?我们采用的是哪种解题方法?棱线法!例4:求四棱锥被截切后的俯视图和左视图。121(2)Ⅰ、Ⅱ两点分别同时位于三个面上。三面共点:2●1●
注意:要逐个截平面分析和绘制截交线。当平面体只有局部被截切时,先假想为整体被截切,求出截交线后再取局部。例5:求六棱柱被截切后的水平投影和侧面投影作图方法:1求棱线与截平面的共有点2连线
3根据可见性处理轮廓线1״2״1׳2׳2׳2׳2׳7׳7״5׳6׳5״6״12345673׳4׳3״4״当截交线的投影为非圆曲线时,其作图步骤为:将各点光滑地连接起来,并判断截交线的可见性。先找特殊点,再补充中间点。三、曲面立体的截交线1.圆柱体表面的截交线
截平面与圆柱面的交线的形状取决于截平面与圆柱轴线的相对位置。垂直圆椭圆平行两平行直线倾斜圆柱截交线求共有点的方法1).利用积聚性法2).素线法上一级圆柱截交线例题2023/7/2711'1"4'5'6'7'6"7"5"4"2'3'2"3"8'8"82637546732451"8"圆柱截交线1返回分析:截交线的形状截交线的投影特性长方形侧平面椭圆正垂面1.圆柱体表面的截交线1.圆柱体表面的截交线圆柱截交线2返回圆柱截交线3返回圆柱截交线4返回圆柱截交线5返回圆柱截交线6返回圆柱截交线7返回根据截平面与圆锥轴线的相对位置不同,截交线有五种形状。过锥顶两相交直线PV圆PVθθ=90°PV椭圆αθθ>α抛物线PVθαθ=α双曲线PVαθ=0°<α2.圆锥体表面的截交线(2).圆锥截交线的求法求共有点的方法——素线法纬圆法
作图步骤:1).投影分析2).求特殊位置点3).求一般位置点4).光滑连接各点5).判断可见性6).整理轮廓线2023/7/27例1、如图所示,圆锥被正垂面截切,求出截交线的另外两个投影。平面与圆柱相交此种截交线为一椭圆。由于圆锥前后对称,故椭圆也前后对称。椭圆的长轴为截平面与圆锥前后对称面的交线——正平线,椭圆的短轴是垂直于长轴的正垂线。ⅠⅡⅢⅣ正平线正垂线ⅠⅡⅢⅣ正平线正垂线平面与圆锥相交具体步骤如下:(1)先作出截交线上的特殊点。1’2’121”2”3’4’345’6’65(2)再作一般点。(3)依次光滑连接各点,即得截交线的水平投影和侧面投影。(4)补全侧面转向轮廓线。3”4”5”6”7’8’787”8”辅助平面法平面与圆锥相交例2、如图所示,圆锥被水平面截切,求出截交线的另外两个投影。342153’2’(4’)1’(5’)4”3”2”1”(1)先求特殊点。(2)再求一般点。(3)依次光滑连接各点。5”31524具体步骤如下:d′●c′●e●c●a●d●b●例3:圆锥被正平面截切,补全主视图。EDCABb′●a′●e′●例4:已知圆锥的主视图,补画俯、左视图3.球体的截交线平面与圆球相交所得截交线形状圆投影为圆或楕圆或直线作图步骤1.投影分析2.求特殊位置点3.求一般位置点4.连接各点5.判断可见性6.整理轮廓线(2).圆球上的截交线求共有点的方法——纬圆法2023/7/27圆球截交线例题2023/7/27圆球截交线1例2.完成球体的三视图圆球截交线2圆球截交线3圆球截交线4圆球截交线5第四节基本体及带切口基本体的尺寸标注一、标注尺寸的基本要求:1.
正确尺寸必须符合国家标准《技术制图》《机械制图》中有关尺寸注法的规定。2.
完整
尺寸必须能完全确定立体的形状和大小,不得遗漏,也不得重复标注尺寸,能由其它尺寸决定的图形,不需重复标注尺寸。3.
清晰
尺寸尽量注在反映该形体特征明显的视图上。两个视图反映的尺寸,尽量标注在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿园元旦活动计划8篇
- 2024年版企业劳动协议参考文本版B版
- 2022幼儿手工教案
- 小区物业工作计划
- 2024-2030年中国酚醛树脂涂料行业发展运行现状及投资潜力预测报告
- 半导体激光治疗仪项目可行性分析报告
- 大班健康活动教案四篇
- 大学班主任工作计划
- 美术教师个人工作总结5篇
- 医学类实习报告模板九篇
- 无人机项目建设规划投资计划书
- 网络安全产品质保与售后方案
- 2024-2025学年河北省高三上学期省级联测政治试题及答案
- 贵州省贵阳市2023-2024学年高一上学期期末考试 物理 含解析
- 幼儿园班级管理中的冲突解决策略研究
- 【7上英YL】芜湖市2023-2024学年七年级上学期英语期中素质教育评估试卷
- 2024年度中国钠离子电池报告
- 2024年问政山东拆迁协议书模板
- 浪潮iqt在线测评题及答案
- 山东省青岛市2023-2024学年高一年级上册1月期末选科测试 生物 含解析
- 电工技术(第3版)表格式教案教学详案设计
评论
0/150
提交评论