版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
典型全控型器件
2.4.1门极可关断晶闸管
2.4.2电力晶体管
2.4.3电力场效应晶体管
2.4.4绝缘栅双极晶体管2.4120世纪80年代以来,信息电子技术与电力电子技术在各自发展的基础上相结合——高频化、全控型、采用集成电路制造工艺的电力电子器件,从而将电力电子技术又带入了一个崭新时代。典型代表——门极可关断晶闸管、电力晶体管、电力场效应晶体管、绝缘栅双极晶体管。典型全控型器件2.42门极可关断晶闸管门极可关断晶闸管(Gate-Turn-OffThyristor—GTO)
1964年,美国第一次试制成功了500V/10A的GTO。在此后的近10年内,GTO的容量一直停留在较小水平,只在汽车点火装置和电视机行扫描电路中进行试用。自70年代中期开始,GTO的研制取得突破,相继出世了1300V/600A、2500V/1000A、4500V/2400A的产品,目前已达9kV/25kA/800Hz及6kV/6kA/1kHz的水平。2.4.13GTO有对称、非对称和逆导三种类型。与对称GTO相比,非对称GTO通态压降小、抗浪涌电流能力强、易于提高耐压能力(3000V以上)。逆导型GTO是在同一芯片上将GTO与整流二极管反并联制成的集成器件,不能承受反向电压,主要用于中等容量的牵引驱动中。在当前各种自关断器件中,GTO容量最大、工作频率最低(1~2kHz)。GTO是电流控制型器件,因而在关断时需要很大的反向驱动电流;GTO通态压降大、dV/dT及di/dt耐量低,需要庞大的吸收电路。目前,GTO虽然在低于2000V的某些领域内已被GTR和IGRT等所替代,但它在大功率电力牵引中有明显优势;今后,它也必将在高压领域占有一席之地。42.GTO的结构和工作原理结构:与普通晶闸管的相同点:PNPN四层半导体结构,外部引出阳极、阴极和门极。和普通晶闸管的不同点:GTO是一种多元的功率集成器件,内部包含数十个甚至数百个共阳极的小GTO元,这些GTO元的阴极和门极则在器件内部并联在一起。图2-13GTO的内部结构和电气图形符号
a)各单元的阴极、门极间隔排列的图形b)并联单元结构断面示意图c)电气图形符号5工作原理:与普通晶闸管一样,可以用图2-7所示的双晶体管模型来分析。图2-7晶闸管的双晶体管模型及其工作原理1+2=1是器件临界导通的条件。当1+2>1时,两个等效晶体管过饱和而使器件导通;当1+2<1时,不能维持饱和导通而关断。
由P1N1P2和N1P2N2构成的两个晶体管V1、V2分别具有共基极电流增益α1和α2。门极可关断晶闸管2.4.16GTO能够通过门极关断的原因是其与普通晶闸管有如下区别:门极可关断晶闸管2.4.1
(1)设计2较大,使晶体管V2控制灵敏,易于GTO关断。(2)导通时1+2更接近1(1.05,普通晶闸管1+21.15)导通时饱和不深,接近临界饱和,有利门极控制关断,但导通时管压降增大。
(3)多元集成结构使GTO元阴极面积很小,门、阴极间距大为缩短,使得P2基区横向电阻很小,能从门极抽出较大电流。图2-7晶闸管的工作原理7由上述分析我们可以得到以下结论:GTO导通过程与普通晶闸管一样,只是导通时饱和程度较浅。GTO关断过程:强烈正反馈——门极加负脉冲即从门极抽出电流,则Ib2减小,使IK和Ic2减小,Ic2的减小又使IA和Ic1减小,又进一步减小V2的基极电流。当IA和IK的减小使1+2<1时,器件退出饱和而关断。多元集成结构还使GTO比普通晶闸管开通过程快,承受di/dt能力强。门极可关断晶闸管2.4.182.GTO的动态特性开通过程:与普通晶闸管类似,需经过延迟时间td和上升时间tr。
图2-14GTO的开通和关断过程电流波形门极可关断晶闸管2.4.19关断过程:与普通晶闸管有所不同抽取饱和导通时储存的大量载流子——储存时间ts,使等效晶体管退出饱和。等效晶体管从饱和区退至放大区,阳极电流逐渐减小——下降时间tf
。残存载流子复合——尾部时间tt
。通常tf比ts小得多,而tt比ts要长。门极负脉冲电流幅值越大,前沿越陡,抽走储存载流子的速度越快,ts越短。门极负脉冲的后沿缓慢衰减,在tt阶段仍保持适当负电压,则可缩短尾部时间
。
GTO的开通和关断过程电流波形门极可关断晶闸管2.4.1103.GTO的主要参数门极可关断晶闸管2.4.1——
延迟时间与上升时间之和。延迟时间一般约1~2s,上升时间则随通态阳极电流值的增大而增大。——
一般指储存时间和下降时间之和,不包括尾部时间。GTO的储存时间随阳极电流的增大而增大,下降时间一般小于2s。关断时间toff开通时间ton
不少GTO都制造成逆导型,类似于逆导晶闸管,需承受反压时,应和电力二极管串联。
许多参数和普通晶闸管相应的参数意义相同,以下只介绍意义不同的参数。11最大可关断阳极电流IATO门极可关断晶闸管2.4.1
电流关断增益offGMATOoffII=b(2-8)off一般很小,只有5左右,这是GTO的一个主要缺点。1000A的GTO关断时门极负脉冲电流峰值要200A
。
——GTO额定电流。
——最大可关断阳极电流与门极负脉冲电流最大值IGM之比称为电流关断增益。12术语用法:电力晶体管(GiantTransistor——GTR,直译为巨型晶体管)耐高电压、大电流的双极结型晶体管(BipolarJunctionTransistor——BJT),英文有时候也称为PowerBJT。在电力电子技术的范围内,GTR与BJT这两个名称等效。电力晶体管2.4.213GTR是一种电流控制的双极双结电力电子器件,产生于本世纪70年代。额定值已达1800V/800A/2kHz、1400V/600A/5kHz、600V/3A/100kHz。它既具备晶体管的固有特性,又增大了功率容量,因此,由它所组成的电路灵活、成熟、开关损耗小、开关时间短,在电源、电机控制、通用逆变器等中等容量、中等频率的电路中应用广泛。GTR的缺点是驱动电流较大、耐浪涌电流能力差、易受二次击穿而损坏。在开关电源和UPS内,GTR正逐步被功率MOSFET和IGBT所代替。142.
GTR的结构和工作原理图2-15GTR的结构、电气图形符号和内部载流子的流动
a)内部结构断面示意图b)电气图形符号c)内部载流子的流动电力晶体管2.4.2与普通的双极结型晶体管基本原理是一样的。主要特性是耐压高、电流大、开关特性好。通常采用至少由两个晶体管按达林顿接法组成的单元结构。采用集成电路工艺将许多这种单元并联而成。15在应用中,GTR一般采用共发射极接法。集电极电流ic与基极电流ib之比为(2-9)
——GTR的电流放大系数,反映了基极电流对集电极电流的控制能力当考虑到集电极和发射极间的漏电流Iceo时,ic和ib的关系为ic=ib+Iceo(2-10)产品说明书中通常给直流电流增益hFE——在直流工作情况下集电极电流与基极电流之比。一般可认为hFE。单管GTR的
值比小功率的晶体管小得多,通常为10左右,采用达林顿接法可有效增大电流增益。电力晶体管2.4.2162.GTR的基本特性
(1)
静态特性共发射极接法时的典型输出特性:截止区、放大区和饱和区。在电力电子电路中GTR工作在开关状态,即工作在截止区或饱和区在开关过程中,即在截止区和饱和区之间过渡时,要经过放大区图2-16共发射极接法时GTR的输出特性电力晶体管2.4.217(2)
动态特性开通过程延迟时间td和上升时间tr,二者之和为开通时间ton。td主要是由发射结势垒电容和集电结势垒电容充电产生的。增大ib的幅值并增大dib/dt,可缩短延迟时间,同时可缩短上升时间,从而加快开通过程。图2-17GTR的开通和关断过程电流波形电力晶体管2.4.218关断过程储存时间ts和下降时间tf,二者之和为关断时间toff。ts是用来除去饱和导通时储存在基区的载流子的,是关断时间的主要部分。减小导通时的饱和深度以减小储存的载流子,或者增大基极抽取负电流Ib2的幅值和负偏压,可缩短储存时间,从而加快关断速度。负面作用是会使集电极和发射极间的饱和导通压降Uces增加,从而增大通态损耗。GTR的开关时间在几微秒以内,比晶闸管和GTO都短很多。GTR的开通和关断过程电流波形电力晶体管2.4.2193.GTR的二次击穿现象与安全工作区一次击穿集电极电压升高至击穿电压时,Ic迅速增大,出现雪崩击穿。只要Ic不超过限度,GTR一般不会损坏,工作特性也不变。
二次击穿一次击穿发生时Ic增大到某个临界点时会突然急剧上升,并伴随电压的陡然下降。常常立即导致器件的永久损坏,或者工作特性明显衰变。电力晶体管2.4.220安全工作区(SafeOperatingArea——SOA)最高电压UceM、集电极最大电流IcM、最大耗散功率PcM、二次击穿临界线限定。图2-18GTR的安全工作区电力晶体管2.4.221也分为结型和绝缘栅型(类似小功率FieldEffectTransistor——FET)但通常主要指绝缘栅型中的MOS型(MetalOxideSemiconductorFET)简称电力MOSFET(PowerMOSFET)结型电力场效应晶体管一般称作静电感应晶体管(StaticInductionTransistor——SIT)电力场效应晶体管2.4.322
特点——用栅极电压来控制漏极电流驱动电路简单,需要的驱动功率小。开关速度快,工作频率高。——电力MOSFET的工作频率在所有电力电子器件中是最高的。但电流容量小,耐压低,只适用于小功率电力电子的装置。目前制造水平大概是1kV/2A/2MHz和60V/200A/2MHz。电力场效应晶体管2.4.3231.电力MOSFET的结构和工作原理
电力MOSFET的种类
按导电沟道可分为P沟道和N沟道
耗尽型——当栅极电压为零时漏源极之间就存在导电沟道增强型——对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道
电力MOSFET主要是N沟道增强型电力场效应晶体管2.4.324电力MOSFET的结构与符号图2-19电力MOSFET的结构和电气图形符号电力场效应晶体管2.4.325电力场效应晶体管2.4.3导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管。导电机理与小功率MOS管相同,但结构上有较大区别。电力MOSFET的多元集成结构,不同的生产厂家采用了不同设计。国际整流器公司(InternationalRectifier)的HEXFET采用了六边形单元西门子公司(Siemens)的SIPMOSFET采用了正方形单元摩托罗拉公司(Motorola)的TMOS采用了矩形单元按“品”字形排列26小功率MOS管是横向导电器件电力MOSFET大都采用垂直导电结构,又称为VMOSFET(VerticalMOSFET)——大大提高了MOSFET器件的耐压和耐电流能力。按垂直导电结构的差异,又分为利用V型槽实现垂直导电的VVMOSFET和具有垂直导电双扩散MOS结构的VDMOSFET(VerticalDouble-diffusedMOSFET)。这里主要以VDMOS器件为例进行讨论电力场效应晶体管2.4.327电力MOSFET的工作原理截止:漏源极间加正电源,栅源极间电压为零。P基区与N漂移区之间形成的PN结J1反偏,漏源极之间无电流流过。导电:UGS>0,栅极是绝缘的,所以不会有栅极电流流过。但电子会被吸引到栅极下面的P区表面.当UGS>UT,栅极下P区表面的电子浓度将超过空穴浓度,使P型半导体反型成N型而成为反型层,该反型层形成N沟道而使PN结J1消失,漏极和源极导电。281)
静态特性漏极电流ID和栅源间电压UGS的关系称为MOSFET的转移特性。ID较大时,ID与UGS的关系近似线性,曲线的斜率定义为跨导Gfs。图2-20电力MOSFET的转移特性和输出特性
a)转移特性2.电力MOSFET的基本特性电力场效应晶体管2.4.329MOSFET的漏极伏安特性:截止区(对应于GTR的截止区)饱和区(对应于GTR的放大区)非饱和区(对应于GTR的饱和区)电力MOSFET工作在开关状态,即在截止区和非饱和区之间来回转换。电力MOSFET漏源极之间有寄生二极管,漏源极间加反向电压时器件导通。电力MOSFET的通态电阻具有正温度系数,对器件并联时的均流有利。
电力MOSFET的转移特性和输出特性b)输出特性电力场效应晶体管2.4.3302)
动态特性开通过程开通延迟时间td(on)
——
up前沿时刻到uGS=UT并开始出现iD的时刻间的时间段。上升时间tr——uGS从uT上升到MOSFET进入非饱和区的栅压UGSP的时间段。iD稳态值由漏极电源电压UE和漏极负载电阻决定。UGSP的大小和iD的稳态值有关UGS达到UGSP后,在up作用下继续升高直至达到稳态,但iD已不变。开通时间ton——开通延迟时间与上升时间之和。图2-21电力MOSFET的开关过程a)测试电路b)开关过程波形up—脉冲信号源,Rs—信号源内阻,RG—栅极电阻,RL—负载电阻,RF—检测漏极电流电力场效应晶体管2.4.331关断过程关断延迟时间td(off)
——up下降到零起,Cin通过Rs和RG放电,uGS按指数曲线下降到UGSP时,iD开始减小止的时间段。下降时间tf——
uGS从UGSP继续下降起,iD减小,到uGS<UT时沟道消失,iD下降到零为止的时间段。关断时间toff——关断延迟时间和下降时间之和。图2-21电力MOSFET的开关过程a)测试电路b)开关过程波形up—脉冲信号源,Rs—信号源内阻,RG—栅极电阻,RL—负载电阻,RF—检测漏极电流电力场效应晶体管2.4.332MOSFET的开关速度
MOSFET的开关速度和Cin充放电有很大关系。使用者无法降低Cin,但可降低驱动电路内阻Rs减小时间常数,加快开关速度。MOSFET只靠多子导电,不存在少子储存效应,因而关断过程非常迅速。开关时间在10~100ns之间,工作频率可达100kHz以上,是主要电力电子器件中最高的。场控器件,静态时几乎不需输入电流。但在开关过程中需对输入电容充放电,仍需一定的驱动功率。开关频率越高,所需要的驱动功率越大。电力场效应晶体管2.4.333绝缘栅双极晶体管GTR和GTO的特点——双极型,电流驱动,有电导调制效应,通流能力很强,开关速度较低,所需驱动功率大,驱动电路复杂。MOSFET的优点——单极型,电压驱动,开关速度快,输入阻抗高,热稳定性好,所需驱动功率小而且驱动电路简单。两类器件取长补短结合而成的复合器件—Bi-MOS器件
绝缘栅双极晶体管(Insulated-gateBipolarTransistor——IGBT或IGT)
GTR和MOSFET复合,结合二者的优点,具有好的特性。
1986年投入市场后,取代了GTR和一部分MOSFET的市场,中小功率电力电子设备的主导器件。
继续提高电压和电流容量,以期再取代GTO的地位。其研制水平已达4500V/1000A2.4.434绝缘栅双极晶体管1.IGBT的结构和工作原理三端器件:栅极G、集电极C和发射极E图2-22IGBT的结构、简化等效电路和电气图形符号a)内部结构断面示意图b)简化等效电路c)电气图形符号2.4.435
驱动原理与电力MOSFET基本相同,场控器件,通断由栅射极电压uGE决定。导通:uGE大于开启电压UGE(th)时,MOSFET内形成沟道,为晶体管提供基极电流,IGBT导通。IGBT的原理绝缘栅双极晶体管2.4.4导通压降:电导调制效应使电阻RN减小,使通态压降小。关断:栅射极间施加反压或不加信号时,MOSFET内的沟道消失,晶体管的基极电流被切断,IGBT关断。EC362.IGBT的基本特性1)
IGBT的静态特性图2-23IGBT的转移特性和输出特性a)转移特性b)输出特性绝缘栅双极晶体管2.4.437转移特性——IC与UGE间的关系,与MOSFET转移特性类似。开启电压UGE(th)——IGBT能实现电导调制而导通的最低栅射电压。UGE(th)随温度升高而略有下降,在+25C时,UGE(th)的值一般为2~6V。图2-23IGBT的转移特性和输出特性a)转移特性绝缘栅双极晶体管2.4.438输出特性(伏安特性)
—以UGE为参考变量时,
IC与UCE间的关系。分为三个区域:正向阻断区、有源区和饱和区。分别与GTR的截止区、放大区和饱和区相对应。uCE<0时,IGBT为反向阻断工作状态。图2-23IGBT的转移特性和输出特性b)输出特性绝缘栅双极晶体管2.4.4392)
IGBT的动态特性图2-24IGBT的开关过程ttt10%90%10%90%UCEIC0O0UGEUGEMICMUCEMtfv1tfv2tofftontfi1tfi2td(off)tftd(on)trUCE(on)UGEMUGEMICMICM绝缘栅双极晶体管2.4.440IGBT中双极型PNP晶体管的存在,虽然带来了电导调制效应的好处,但也引入了少子储存现象,因而IGBT的开关速度低于电力MOSFET。IGBT的击穿电压、通态压降和关断时间也是需要折衷的参数。高压器件的N基区必须有足够宽度和较高的电阻率,这会引起通态压降的增大和关断时间的延长。绝缘栅双极晶体管2.4.4
通过对IGBT的基本特性的分析,可以看出:41IGBT的特性和参数特点可以总结如下:绝缘栅双极晶体管2.4.4(1)
开关速度高,开关损耗小。在电压1000V以上时,开关损耗只有GTR的1/10,与电力MOSFET相当。(2)
相同电压和电流定额时,安全工作区比GTR大,且具有耐脉冲电流冲击能力。(3)
通态压降比VDMOSFET低,特别是在电流较大的区域。(4)
输入阻抗高,输入特性与MOSFET类似。(5)与MOSFET和GTR相比,耐压和通流能力还可以进一步提高,同时保持开关频率高的特点。42
由于IGBT具有上述特点,在中等功率容量(600V以上)的UPS、开关电源及交流电机控制用PWM逆变器中,IGBT已逐步替代GTR成为核心元件。另外,IR公司已设计出开关频率高达150kHz的WARP系列400~600VIGBT,其开关特性与功率MOSFET接近,而导通损耗却比功率MOSFET低得多。该系列IGBT有望在高频150kHz整流器中取代功率MOSFET,并大大降低开关损耗。434.IGBT的擎住效应和安全工作区寄生晶闸管——由一个N-PN+晶体管和作为主开关器件的P+N-P晶体管组成。图2-22IGBT的结构、简化等效电路和电气图形符号a)内部结构断面示意图b)简化等效电路c)电气图形符号绝缘栅双极晶体管2.4.444擎住效应或自锁效应:绝缘栅双极晶体管2.4.4
动态擎住效应比静态擎住效应所允许的集电极电流小。擎住效应曾限制IGBT电流容量提高,20世纪90年代中后期开始逐渐解决。——NPN晶体管基极与发射极之间存在体区短路电阻,P形体区的横向空穴电流会在该电阻上产生压降,相当于对J3结施加正偏压,一旦J3开通,栅极就会失去对集电极电流的控制作用,电流失控。45IGBT往往与反并联的快速二极管封装在一起,制成模块,成为逆导器件。——最大集电极电流、最大集射极间电压和最大允许电压上升率duCE/dt确定。反向偏置安全工作区(RBSOA)——最大集电极电流、最大集射极间电压和最大集电极功耗确定。正偏安全工作区(FBSOA)绝缘栅双极晶体管2.4.446其他新型电力电子器件
2.5.1MOS控制晶闸管MCT
2.5.2静电感应晶体管SIT
2.5.3静电感应晶闸管SITH
2.5.4集成门极换流晶闸管IGCT
2.5.5功率模块与功率集成电路2.547MOS控制晶闸管MCTMCT(MOSControlledThyristor)——MOSFET与晶闸管的复合
MCT结合了二者的优点:
MOSFET的高输入阻抗、低驱动功率、快速的开关过程。
晶闸管的高电压大电流、低导通压降。一个MCT器件由数以万计的MCT元组成,每个元的组成为:一个PNPN晶闸管,一个控制该晶闸管开通的MOSFET,和一个控制该晶闸管关断的MOSFET。已研制出阻断电压达4000V的MCT,75A/1000VMCT已应用于串联谐振变换器。随着性能价格比的不断优化,MCT将逐渐走入应用领域并有可能取代高压GTO,与IGBT的竞争亦将在中功率领域展开。
2.5.148静电感应晶体管SITSIT(StaticInductionTransistor)——1970年,结型场效应晶体管小功率SIT器件的横向导电结构改为垂直导电结构,即可制成大功率的SIT器件。多子导电的器件,工作频率与电力MOSFET相当,甚至更高,功率容量更大,因而适用于高频大功率场合。在雷达通信设备、超声波功率放大、脉冲功率放大和高频感应加热等领域获得应用。缺点:栅极不加信号时导通,加负偏压时关断,称为正常导通型器件,使用不太方便。通态电阻较大,通态损耗也大,因而还未在大多数电力电子设备中得到广泛应用。2.5.249静电感应晶闸管SITHSITH(StaticInductionThyristor)——1972年,又被称为场控晶闸管(FieldControlledThyristor——FCT)。
比SIT多了一个具有少子注入功能的PN结,SITH是两种载流子导电的双极型器件,具有电导调制效应,通态压降低、通流能力强。其很多特性与GTO类似,但开关速度比GTO高得多,是大容量的快速器件。
SITH一般也是正常导通型,但也有正常关断型。此外,其制造工艺比GTO复杂得多,电流关断增益较小,因而其应用范围还有待拓展。2.5.350集成门极换流晶闸管IGCTIGCT(IntegratedGate-CommutatedThyristor),也称GCT(Gate-CommutatedThyristor)20世纪90年代后期出现,结合了IGBT与GTO的优点,容量与GTO相当,开关速度快10倍,且可省去GTO庞大而复杂的缓冲电路,只不过所需的驱动功率仍很大。目前正在与IGBT等新型器件激烈竞争,试图最终取代GTO在大功率场合的位置。2.5.451功率模块与功率集成电路20世纪80年代中后期开始,模块化趋势,将多个器件封装在一个模块中,称为功
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论