版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年湖北省恩施市市第二中学高三数学理摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.某空间几何体的三视图如图所示,则该几何体的体积为(
)
A.
B.
C.
D.
参考答案:B2.已知向量与不共线,且,若,则向量与的夹角为A. B.C. D.0参考答案:A3.已知命题p:?x∈R,sinx≤1,则()A.¬p:?x0∈R,sinx0≥1 B.¬p:?x∈R,sinx≥1C.¬p:?x0∈R,sinx0>1 D.¬p:?x∈R,sinx>1参考答案:C【考点】2J:命题的否定.【分析】利用“¬p”即可得出.【解答】解:∵命题p:?x∈R,sinx≤1,∴¬p:?x0∈R,sinx0>1.故选:C.4.已知集合,,则(
)A.[1,2)
B.
C.[0,1]
D.参考答案:D5.已知集合,若,则(
)A.参考答案:B6.已知函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则a的取值范围是()A.(﹣∞,4] B.(﹣∞,2] C.(﹣4,4] D.(﹣4,2]参考答案:C【考点】复合函数的单调性;二次函数的性质;对数函数的单调区间.【分析】若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则x2﹣ax+3a>0且f(2)>0,根据二次函数的单调性,我们可得到关于a的不等式,解不等式即可得到a的取值范围.【解答】解:若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则当x∈[2,+∞)时,x2﹣ax+3a>0且函数f(x)=x2﹣ax+3a为增函数即,f(2)=4+a>0解得﹣4<a≤4故选C7.设F1,F2分别是双曲线的左、右焦点,若点P在双曲线上,且,求
A.
B.
C.
D.参考答案:答案:B8.已知函数,则的解集为(
)A.
B.C.
D.参考答案:B9.已知A.0
B.1
C.2
D.3参考答案:B10.函数
(
)
A.是奇函数,且在(-∞,+∞)上是减函数
B.是奇函数,且在(-∞,+∞)上是增函数
C.是偶函数,且在(-∞,+∞)上是减函数
D.是偶函数,且在(-∞,+∞)上是增函数
参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且x∈[0,2]时,f(x)=log2(x+1),甲、乙、丙、丁四位同学有下列结论:甲:f(3)=1;乙:函数f(x)在[﹣6,﹣2]上是减函数;丙:函数f(x)关于直线x=4对称;丁:若m∈(0,1),则关于x的方程f(x)﹣m=0在[0,6]上所有根之和为4,其中结论正确的同学是
.参考答案:甲、乙、丁【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】本题利用函数的奇偶性和函数的解析式的关系,得到函数的对称关系,从而得到函数的中心对称和轴对称的性质,得到本题的相关结论.【解答】解:∵函数f(x)是定义在R上的奇函数,∴函数f(x)的图象关于原点对称,f(﹣x)=﹣f(x).∵函数f(x)满足f(x﹣4)=﹣f(x),∴f(x﹣8)=﹣f(x﹣4),∴f(x﹣8)=f(x),∴函数f(x)的周期为8.(1)命题甲∵f(x﹣4)=﹣f(x),∴f(3)=﹣f(﹣1)=f(1).∵x∈[0,2]时,f(x)=log2(x+1),∴f(1)=log2(1+1)=1,∴f(3)=1.∴命题甲正确;(2)命题乙∵当x∈[0,2]时,f(x)=log2(x+1),∴函数f(x)在[0,2]上单调递增.∵函数f(x)是定义在R上的奇函数,∴函数f(x)在[﹣2,0]上单调递增.∴函数f(x)在[﹣2,2]上单调递增.∵f(﹣2+x)=﹣f(2﹣x)=f[(2﹣x)﹣4]=f(﹣2﹣x),∴函数f(x)关于直线x=﹣2对称,∴函数f(x)在[﹣6,﹣2]上是减函数.∴命题乙正确.(3)命题丙∵f(4﹣x)=﹣f(x﹣4)=﹣f(x﹣4+8)=﹣f(4+x)∴由点(4﹣x,f(4﹣x))与点(4+x,f(4+x))关于(4,0)对称,知:函数f(x)关于点(4,0)中心对称.假设函数f(x)关于直线x=4对称,则函数f(x)=0,与题意不符,∴命题丙不正确.(4)命题丁∵当x∈[0,2]时,f(x)=log2(x+1),∴函数f(x)在[0,2]上单调递增,0≤f(x)≤log23.∵f(2﹣x)=﹣f(x﹣2)=f(x﹣2﹣4)=f(x﹣6)=f(2+x),∴函数f(x)的图象关于直线x=2对称.∴函数f(x)在[2,4]上单调递减,0≤f(x)≤log23.∵函数f(x)关于点(4,0)中心对称,∴当x∈[4,8]时,﹣log23≤f(x)≤0.∴当m∈(0,1)时,则关于x的方程f(x)﹣m=0在[0,6]上所有根有两个,且关于2对称,故x1+x2=4.∴命题丁正确.故答案为:甲、乙、丁.【点评】本题考查了函数的奇偶性、单调性、对称性与函数图象的关系,本题综合性强,难度较大,属于中档题.12.已知函数那么不等式的解集为
.
参考答案:13.已知等差数列{an}的前n项和为Sn,且满足,则数列{an}的公差是
.参考答案:2【考点】8F:等差数列的性质.【分析】在题设条件的两边同时乘以6,然后借助前n项和公式进行求解.【解答】解:∵,∴,∴6a1+6d﹣6a1﹣3d=6,∴d=2.故答案为:2.14.已知函数若,则实数=
参考答案:115.=
.参考答案:2略16.已知命题P:[0,l],,命题q:“R,x2+4x+a=0”,若命题“p∧q”是真命题,则实数a的取值范围是
;参考答案:因为[0,l],,,所以。由“R,x2+4x+a=0,可得判别式,即。若命题“p∧q”是真命题,所以同为真,所以,即。17.若变量x,y满足约束条件,则的最大值为.参考答案:3【考点】基本不等式.【专题】不等式的解法及应用.【分析】先画出线性约束条件表示的可行域,再将目标函数赋予几何意义,最后利用数形结合即可得目标函数的最值.【解答】解:先画出满足条件的平面区域,如图所示:的几何意义为可行域内的动点与定点(0,0)连线的斜率,所以当过点A(1,3)斜率最大,所以==3,故答案为:3【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)已知数列{an}的前n项和为Sn=2n﹣1,n∈N*(1)求数列{an}的通项公式;(2)设数列bn=,试求数列{bn}的前n项和Tn.参考答案:【考点】:数列的求和;数列递推式.【专题】:等差数列与等比数列.【分析】:(1)由于数列{an}的前n项和为Sn=2n﹣1,n∈N*.利用“当n≥2时,an=Sn﹣Sn﹣1,当n=1时,a1=S1”即可得出.2)bn==,利用“裂项求和”即可得出.解:(1)∵数列{an}的前n项和为Sn=2n﹣1,n∈N*.∴当n≥2时,an=Sn﹣Sn﹣1=(2n﹣1)﹣(2n﹣1﹣1)=2n﹣1.当n=1时,a1=S1=2﹣1=1,上式也满足.∴an=2n﹣1.(2)bn===,则数列{bn}的前n项和Tn=+…+=1﹣=.【点评】:本题考查了递推式的应用、对数的运算性质、“裂项求和”,考查了推理能力与计算能力,属于中档题.19.以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=4cosθ,曲线M的直角坐标方程为x﹣2y+2=0(x>0)(1)以曲线M上的点与点O连线的斜率k为参数,写出曲线M的参数方程;(2)设曲线C与曲线M的两个交点为A,B,求直线OA与直线OB的斜率之和.参考答案:【考点】Q4:简单曲线的极坐标方程.【分析】(1)联立,能求出曲线M的参数方程.(2)求出曲线C的直角坐标方程为(x﹣2)2+y2=4,联立,求出A与B,由此能求出直线OA与直线OB的斜率之和.【解答】解:(1)联立,得到曲线M的参数方程为,(k为参数).(2)∵曲线C的极坐标方程为ρ=4cosθ,∴曲线C的直角坐标方程为(x﹣2)2+y2=4,联立,得或,∴直线OA与直线OB的斜率之和:kOA+kOB==4.20.已知函数f(x)=a(lnx-x)(aR)。(I)讨论函数f(x)的单调性;(II)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,函数g(x)=在区间(2,3)上总存在极值,求实数m的取值范围。参考答案:(Ⅰ)易知的定义域为.………1分当时,令即解得增区间为.同理减区间为(0,1);当时,令即解得增区间为(0,1).同理减区间为;当时,不是单调函数.…………………6分(Ⅱ)∵的图像在点处的切线的倾斜角为45°,
∴……7分……………9分,要使函数在区间(2,3)上总存在极值,只需…………………13分21.已知函数f(x)=x3﹣3ax(a∈R).(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)若函数f(x)在区间(﹣1,2)上仅有一个极值点,求实数a的取值范围;(Ⅲ)若a>1,且方程f(x)=a﹣x在区间[﹣a,0]上有两个不相等的实数根,求实数a的最小值.参考答案:【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数的导数,计算f(0),f′(0),从而求出切线方程即可;(Ⅱ)求出函数的导数,通过讨论a的范围,求出函数的单调区间,得到关于a的不等式组,求出a的范围即可;(Ⅲ)令h(x)=f(x)+x﹣a=x3+(1﹣3a)x﹣a,等价于函数h(x)在[﹣a,0]上恰有两个零点,根据函数的单调性求出a的最小值即可.【解答】解:(Ⅰ)因为f'(x)=3(x2﹣a),所以f'(0)=﹣3a,因为f(0)=0,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=﹣3ax.…(Ⅱ)因为f'(x)=3(x2﹣a),所以,当a≤0时,f'(x)≥0在R上恒成立,所以f(x)在R上单调递增,f(x)没有极值点,不符合题意;…当a>0时,令f'(x)=0得,当x变化时,f'(x)与f(x)的变化情况如下表所示:x(﹣∞,)(,)(,+∞)f'(x)+0﹣0+f(x)↗极大值↘极小值↗因为函数f(x)在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年多功能安检镜项目投资价值分析报告
- 2025至2031年中国真丝印花围巾行业投资前景及策略咨询研究报告
- 2024至2030年城市运动车项目投资价值分析报告
- 2024至2030年回火炉项目投资价值分析报告
- 2025至2031年中国双金属片闪动式温控器行业投资前景及策略咨询研究报告
- 2024年汽车质押借款合同含车辆交易税费及贷款保险费用结算协议3篇
- 2024年软件开发与许可合同详细条款和合同标的
- 企业内部财务审计管理制度
- 高端装备制造合作协议
- 数学小天才的故事征文活动感想
- GB/T 15605-2008粉尘爆炸泄压指南
- 中国中枢神经系统胶质瘤诊断和治疗指南
- 中考语文文学文本类阅读复习专题课件:表现手法分析之衬托、对比与抑扬
- 2023年海峡出版发行集团有限责任公司招聘笔试题库及答案解析
- 台大公开课欧丽娟红楼梦讲义
- 【合同范本】补充协议-面积差补款-预售版
- 艺术(音乐、美术)专业人才需求情况调研报告
- [QC成果]提高剪力墙施工质量一次合格率
- 移印工作业指导书
- 乐高基础篇乐高积木和搭建种类专题培训课件
- 事故形成的冰山理论
评论
0/150
提交评论