




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精2010—-2011学年度上学期期中考试试卷高三数学(理)注意事项:1、本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.分别答在答题卡(Ⅰ卷)和答题卷(Ⅱ卷)上。全卷满分150分,时间120分.2、答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,每个小题选出答案后,用2B铅笔将答题卡对应的答案标号涂黑。(考试类型涂A)3、第Ⅱ卷的答案直接答在答卷(Ⅱ卷)上,答卷前将密封线内的项目写清楚。答卷必须用0。5mm的黑色墨水签字笔书写,字迹工整,笔迹清晰。并且必须在题号所指示的答题区内作答,超出答题区域书写无效。不交试题卷,只交第Ⅰ卷的答题卡和第Ⅱ卷的答题卷。第Ⅰ卷(选择题60分)一.选择题:(本大题12个小题,每小题5分,共60分)在每小题给出的四个选项中,只有一项是符合题目要求的;各题答案必须填涂在答题卡上相应位置。1.集合,集合,若集合只有一个子集,则实数的取值范围是() A. B. C. D.2.已知,则下列函数的图象错误的是()3.设则()A.B.10C。20D。1004.函数的零点个数是()A。0B。1C5.下列四个条件中,是的必要不充分条件的是()A.,B.,C.为双曲线,D.,6.已知则()A.B.C。D。7.设且,则的值为()A.6B。8C.10D。128。定义域为R的函数对任意x都有,若当时,单调递增,则当时,有()A.B.C. D.9.已知命题P:函数在内单调递减;命题Q:不等式的解集为R.如果“P或Q”是真命题,“P且Q”是假命题,则实数a的取值范围是()A.B.C.D.10.若关于x的不等式至少有一个正数解,则实数a的取值范围是()A. B. C. D.11.已知命题(1)使成立;(2)使成立;(3)有成立;(4)若A,B是的内角,则“”是“A〉B”的充要条件。其中正确命题的个数为()A.1B.2C。3D.412.已知m<0,f(x)=mx3+eq\f(12,m)x,且f′(1)≥-12,则实数m的值为()A.2 B.-2C.4 D.-42010——2011学年度上学期期中考试试卷高三数学(理)第Ⅱ卷(非选择题90分)二.填空题:(本大题4个小题,每小题5分,共20分。各题答案必须填写在答题卡相应位置上,只填结果,不要过程)。13.已知f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则a的取值范围为__________.14.已知函数的定义域和值域都是,则实数a的值是________.15.已知函数是定义在R上的偶函数,当<0时,是单调递增的,则不等式>的解集是___________________。16.在半径为r的半圆内作一内接梯形,使其底为直径,其他三边为圆的弦,则梯形的面积最大时,其梯形的上底长为__________.三.解答题:(本大题6个小题,共75分)各题解答必须答在答题卷上相应题目指定的方框内(必须写出必要的文字说明.演算步骤或推理过程)。17.(本小题满分12分)已知,且(1)求的值;(2)求的值。18.(本小题满分12分) 集合A={(x,y)},集合B={(x,y),且0},当m=2时,求集合A中y的取值范围。设A,求实数m的取值范围.19.(本小题满分12分)某公司决定采用增加广告投入和技术改造投入两项措施来获得更大的收益.通过对市场的预测,当对两项投入都不大于3(百万元)时,每投入x(百万元)广告费,增加的销售额可近似的用函数y1=-2x2+14x(百万元)来计算;每投入x(百万元)技术改造费用,增加的销售额可近似的用函数y2=-eq\f(1,3)x3+2x2+5x(百万元)来计算.现该公司准备共投入3(百万元),分别用于广告投入和技术改造投入,请设计一种资金分配方案,使得该公司获得最大收益.(注:收益=销售额-投入,答案数据精确到0。01)(参考数据:eq\r(2)≈1.414,eq\r(3)≈1.732)20.(本小题满分12分)设函数的定义域为,对任意有,且,.求的值;求证:是偶函数,且;若时,,求证:在上单调递减.21.(本小题满分12分)设函数f(x)=ax-(a+1)ln(x+1),其中a>0.(1)求f(x)的单调区间;(2)当x>0时,证明不等式:eq\f(x,1+x)〈ln(x+1)<x;(3)设f(x)的最小值为g(a),证明不等式:-eq\f(1,a)〈g(a)<0。22.(本小题满分10分,在下面两个题目中任选一题)(选做题目一)求不等式︱2x+1︱—︱x—3︱≤4的解集(选做题目二)在△ABC中,∠A=120°,K、L分别是AB、AC上的点,且BK=CL,以BK,CL为边向△ABC的形外作正三角形BKP和CLQ。证明:PQ=BC。巩义二中2010—2011届高三上期期中考试数学(理科)试题答案一.选择题:BDACDABCACBB二.填空题:13.a〉6或a<-314.215.16.r三.解答题:17.(本小题满分12分)解:(1)由得,即,又,所以为所求。(2)====.18.(本小题满分12分) 解:(1)当m=2时,由得:∴当时,。故的取值范围为{y︳y≥1}。(2)由AB知方程组得x2+(m-1)x+1=0在0x内有解,即m3或m-1.若3,则x1+x2=1-m〈0,x1x2=1,所以方程只有负根.若m-1,x1+x2=1—m>0,x1x2=1,所以方程有两正根,且两根均为1或两根一个大于1,一个小于1,即至少有一根在[0,2]内.因此{m〈m—1}。19.(本小题满分12分)解:设3(百万元)中技术改造投入为x(百万元),广告费投入为3-x(百万元),则广告收入带来的销售额增加值为-2(3-x)2+14(3-x)(百万元),技述改造投入带来的销售额增加值为-eq\f(1,3)x3+2x2+5x(百万元),所以,投入带来的销售额增加值F(x)=-2(3-x)2+14(3-x)-eq\f(1,3)x3+2x2+5x.由于投入为常量,采取措施前的收益、投入也是常量.所以该公司收益最大时就是销售额增加值最大的时候.整理上式得F(x)=-eq\f(1,3)x3+3x+24,因为F′(x)=-x2+3,令F′(x)=0,解得x=eq\r(3)或x=-eq\r(3)(舍去),当x∈[0,eq\r(3)),F′(x)>0,当x∈(eq\r(3),3]时,F′(x)<0,所以,x=eq\r(3)≈1.73时,F(x)取得最大值.所以,当该公司用于广告投入1.27(百万元),用于技术改造投入1.73(百万元)时,公司将获得最大收益.20.(本小题满分12分)解:(1)令,可得(2)令,可得令,,可得=(3)任取,,,且<,,,,且<,故,,,∴>即>,所以在,上单调递增.21.(本小题满分12分)解:(1)由已知得函数f(x)的定义域为(-1,+∞)且f′(x)=eq\f(ax-1,x+1)(a〉0)f′(x)=0,解得x=eq\f(1,a)当x变化时,f′(x),f(x)的变化情况如下表:x(-1,eq\f(1,a))eq\f(1,a)(eq\f(1,a),+∞)f′(x)-0+f(x)极小值由上表可知,当x∈(-1,eq\f(1,a))时,f′(x)〈0,函数f(x)在(-1,eq\f(1,a))内单调递减,当x∈(eq\f(1,a),+∞)时,f′(x)>0,函数f(x)在(eq\f(1,a),+∞)内单调递增.所以,函数f(x)的单调减区间是(-1,eq\f(1,a)),函数f(x)的单调增区间是(eq\f(1,a),+∞).(2)设φ(x)=ln(x+1)-eq\f(x,1+x),x∈[0,+∞)对φ(x)求导,得:φ′(x)=eq\f(1,x+1)-eq\f(1,(1+x)2)=eq\f(x,(1+x)2)当x〉0时,φ′(x)〉0,所以φ(x)在(0,+∞)内是增函数.所以φ(x)在[0,+∞)上是增函数.当x>0时,φ(x)>φ(0)=0即ln(x+1)-eq\f(x,1+x)〉0,∴eq\f(x,1+x)<ln(x+1).同理可证ln(x+1)<x,∴eq\f(x,1+x)〈ln(x+1)<x.(3)由(1)知,g(a)=f(eq\f(1,a))=1-(a+1)·ln(eq\f(1,a)+1)将x=eq\f(1,a)代入eq\f(x,1+x)〈ln(x+1)<x得:eq\f(1,a+1)〈ln(eq\f(1,a)+1)<eq\f(1,a)即:1〈(a+1)ln(eq\f(1,a)+1)<1+eq\f(1,a)∴-eq\f(1,a)〈1-(a+1)ln(eq\f(1,a)+1)〈0,即-eq\f(1,a)〈g(a)<0.22.(本小题满分10分,在下面两个题目中任选一题)(选做题目一)解:当x<时,得—(2x+1)+(x-3)≤4,∴x≥-8故-8≤x<当≤x≤3时,得(2x+1)+(x-3)≤4,∴x≤2故≤x≤2当x>3时,得(2x+1)-(x—3)≤4∴x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 金融衍生品财产抵押合同
- 汽车4S店场地租赁及三方联营管理协议
- 高端仓储租赁与智能化物业管理服务协议
- 车辆维修与汽车租赁一体化承包协议
- 高端餐饮企业员工职业发展合同
- 餐馆加盟店开业筹备合同参考
- 展会参展商现场活动策划及执行合同
- 高尔夫球场草坪维护与管理全面合作协议
- 拆除作业安全协议书范本
- 2025年酒店前台工作总结
- GB/T 18981-2008射钉
- 质量管理体系认证审核活动常见问题的风险控制解决方案 试题
- 青花瓷中国风ppt
- 安全生产普法宣传课件
- 22104铜及铜合金焊接施工工艺标准修改稿
- DB43-T 1991-2021油茶低产林改造技术规程
- 医疗器械包装微生物屏障性能测试方法探讨
- 柬埔寨各职能部门
- 项目管理之总师项目管理办法
- TAPPI标准的代码和内容
- 海思芯片HTOL老化测试技术规范
评论
0/150
提交评论