版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
f f2021年四川省成都市高三高考数学一诊试卷(理f f一、选择题(共12小题).1.已知集合A={xx2﹣x﹣2≤0},集合B为整数集,则A∩B=( )A.{﹣1,0,1,2}B.{﹣2,﹣1,0,1}C.{0,1} D.{﹣1,0}2.已知i是虚数单设z= 则数+2对应的点位于复平面( )A.第限 B限 C限 D.第四限3.抛物线y=22的焦点坐标( )A(,0) B(,0) C(0,) D(,)4.已知=log0.2,b0.2,c=20.,( )A.<<b B.<<b C.<<c Db<<a5.已知mn是两条不同直线,,γ三,中( )A若mαnα则m∥nC若mα∥β,则α∥β
B若αγβγ则α∥βD若mαnα则m∥n6若taα+A.
)=﹣则sin2α( )B.1 C.2 D﹣7数=x(﹣x2x若(线y=()为( )A.=2x B.=4﹣2 C.=2x D.﹣4+28数=(ω(ωφ<为( )A.=sn2x+)C.=n(x+)
B.=sn(x+)D.=sin4x+)-1-9( )A.已知ab实数,则“ ”是“log3a>log3b”的充分而不必要条件B.已知命题:∀>0,总有x1)e>¬:∃x≤0使(x01)e≤1C设α,β是两个不平m且mα“∥“α∥的件D“x0R,>x02”的否“xR2x≤x”0为1几体面为( )A62π B.1π C.6﹣π D16+2π11.自古以来,人们对于崇山峻岭都心存敬畏,同时感慨大自然的鬼斧神工,一代诗圣杜甫曾赋诗《望岳》:“岱宗夫如何?齐鲁青未了.造化钟神秀,阴阳割昏晓.荡胸生曾云,决毗入归鸟.会当凌绝顶,一览众山小.”然而,随着技术手段的发展,山高路远便不再人们出行的阻碍,伟大领袖毛主席曾作词:“一桥飞架南北,天堑变通途”.在科技腾飞当如图为将A到D修建一条隧道,测量员测得一些数据如图所示A,D同一水平面内则AD间的距离为( )A. kmB. kmC. kmD. km-2-12线O PQO PQ
=1,为坐,,为双曲两且OOQ△Q)A0 B.5 C.0 D5共3).3量=(,1,﹣,k,(2﹣=则k于 .4.总体由编号为0,0,190的0个个取6个个体第1第5第6,则选出第5个个的为 .16 672304 934
002 614435 800
002 469 928 098323 469 638 7481.15. 中x2y2项的是三、共1小题,满分0分)16.函数f(x)=ex﹣1﹣e﹣x+1+asinπx(x∈R,a>0)存在唯一的零点,则实数a的取值范围是 .三、解答题17.已知等比数列{an}的公比q>1,且a1,a3等为0,a=8.(Ⅰ)求数列{an}的通项公式;Ⅱ设 ,求数列{bn}的前n项和Sn.8.为了认真,学某校高三年级随机抽取了100总时间分别在[,3,[3,),[45,,[,9,[9,1,整理得到的布.(Ⅰ)中求a的值,并估计从天自锻的在5,;了生的取的10名学生学习和锻总在2,3和[,9选3人在[,数X的-3-A,,列学A,,设个段估的10名习间)19锥﹣D,D∠C= BD=D=2DP=,PD⊥.(1面D面P;(段PC上点M得 面ABM与平面PBD所成锐二面角的大小.20知F1F2圆C: =1(>b0是是.(1圆1;(2圆x+(+)21相切,圆C1于A,椭圆C1上一点P满足 ,求数λ2的取值范.1数(=2+31)x2+m(∈R.(1数(x性;(2若(=数x=(l+﹣ ≤0(数a.修-4-22.已知在平面直角坐标系xOy中,直线l的参数方程为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为
(t为.(1)线l的普通曲线C的直;(2)知P2,线l与曲线C相于AB两点,求 值.修讲23.设函数f(x=x+(1若f(>a+1求a的取;(2)若对∀a∈0,+∞,f(x)m恒成立,求实数m的取值范围.-5-参考答案一、选择题(共12小题).1.已知集合A={xx2﹣x﹣2≤0},集合B为整数集,则A∩B=( )A.{﹣1,0,1,2}B.{﹣2,﹣1,0,1}C.{0,1} D.{﹣1,0}解:A={x|﹣1≤x≤2},B=Z,∴A∩B={﹣1,0,1,2}.故.2.已知i是虚数单设z= 则数+2对应的点位于复平面( )A.第限 B限 C限 D.第四限∵= = ,∴ ,则+2对应点为(,1第一.故:.3.抛物线y=22的焦点坐标( )A(,0) B(,0) C(0,) D(,)解:整理抛物线方程得x=y焦在y轴p=∴焦坐为0,)选.4.已知=log0.2,b0.2,c=20.,( )A.<<b B.<<b C.<<c Db<<a解:∵a=log0.22<lg0.2<0∴a0,b=3=09,∵c=20.3>2=1∴c,∴c>>,:.-6-f f5.已知mn是两条不同直线,,γ三,中(f fA若mαnα则m∥nC若mα∥β,则α∥β
B若αγβγ则α∥βD若mαnα则m∥nAn故mn故A;Bαβ面故α,β可能相交,可能故B错;Cαβ平行线m故α,β可故C错误;D、故D.:D.6若taα+A.
)=﹣则sin2α( )B.1 C.2 D﹣解:由tan+ )=﹣得 ﹣3,得ta=2,所以sinα= = = =.故.7数=x(﹣x2x若(线y=()方( )A.2x B.=4﹣2 C.=2x D.﹣4+2:数f(x3(﹣1)x+a若(x,得=数f(=x+x得(=3x21,f1=2;线=(点(,)处的切线的斜率:,则曲线y=fx(,2):﹣2=(﹣1即y=﹣2.:.数φ为( )-7-))
))解:由函数的图象可得A=1,== ﹣ ,∴ω2.再根据五点法作图可得× φπ得φ=数,选.9( )A.已知ab实数,则“ ”是“g3a>lg3的件B.已知命题:∀>0,总有x1)e>¬:∃x≤0使(x01)e≤1C设α,β是两个不平m且mα“∥“α∥的件D“x0R,>x02”的否“xR2x≤x”解:对于A知,b实数则“ “lg3>lg3b条件,故A错误;对于B题∀x0(+e>¬∃x>(x0+) ,故B;对于C设αβ是两同m是直线且mα“m∥∥充故C错;对于D∃x0R,>x0的“∀∈R,≤2,故D正确.:.0为1几体面为( )-8-A162π B.1π C.6﹣π D1+2π为2为2为1的长方为1的球.故几为S×2×1×2+﹣π•1+2π•12=1π.:.11.自古以来,人们对于崇山峻岭都心存敬畏,同时感慨大自然的鬼斧神工,一代诗圣杜甫曾赋诗《望岳》:“岱宗夫如何?齐鲁青未了.造化钟神秀,阴阳割昏晓.荡胸生曾云,决毗入归鸟.会当凌绝顶,一览众山小.”然而,随着技术手段的发展,山高路远便不再人们出行的阻碍,伟大领袖毛主席曾作词:“一桥飞架南北,天堑变通途”.在科技腾飞当如图为将A到D修建一条隧道,测量员测得一些数据如图所示A,D同一水平面内则AD间的距离为( )A. kmB. kmC. kmD. km解:接BD,-9-,O PQ在△BCD中,∵D2=2+D2﹣2C•CD•cos∠D=9+25﹣2×3×5×(﹣,O PQ∴D7,∵ 即 ,解:snC= ,AD∠C∠C∴cosABD=co(9°﹣DB)=sD= ,在AD中D2AB+D2﹣A•D•cosB1+49﹣××7× =6﹣2,即D为 k,故选.12线小(
=1,为坐,,为双曲两且OOQ△Q)A0 B.5 C.0 D5线P为且P,代双曲线 =得( ,k ,由OP的k换为﹣,得Qk ﹣ ,所以△Q积= • • •=10+k2) ≥101+k• =0,当且当﹣4k=5k2,即=1时,上式取得等,所以△Q面为20.:.题3量=(,1,﹣,k,(2﹣=则k于2.-10-解:∵=2,),=(﹣1,,∴2﹣=22,),k)=(,﹣k,∵(2﹣=0,∴2×52﹣=,解得=2故案为214.总体由编号为0,0,190的0个个体取6个个体第1第5第6,则选出第5个个的为01 .16 672304 934
002 614435 800
002 469 928 098323 469 638 7481.解第1第5第6于0的号依次为0,0,,02,0;是02;可知对应的为8,,4714;第5为.故答案为1.15. 中x2y2项的是0∵ 示8个因式(2x﹣的要含2y2,需其有2取2x2﹣,其余的因取1.中x2y2为•22•• •=0,故案为2.三、解答题共1小题,满分0分)16数(=ex﹣1﹣ex+1+asinπ(Ra0)数a的取值范围是(0,] .解:函数f()ex﹣1﹣x+1+asinπ(x,a>0)存在唯一的零点,数与数(x=e1﹣﹣e﹣1,-11-g∵φ(1=,g1=,g∴函数(x=asinx与函数(=e1﹣x﹣ex﹣1一1,,又∵(﹣e1﹣﹣e﹣1且e1﹣x>,ex﹣10,∴gx﹣e1﹣x﹣ex﹣1在R上恒小于零即(=e1﹣xex﹣1在R上为单调递,又φ(asnπx(>0为最大值为a的正,∴可数φ(x=asinx与数(x=e1﹣﹣e﹣1图:∴要数(=asnx与函数(=e1﹣﹣e﹣1则φ(≥g(,∵φ(=πacoππa,(1)=﹣e1﹣1e1﹣1=﹣,∴﹣a﹣2,解得a≤,又∵>0数a的范围为0,].案(,].解题17.已知等比数列{an}的公比q>1,且a1,a3等为0,a=8.(Ⅰ)求数列{an}的通项公式;Ⅱ设 ,求数列{bn}的前n项和Sn.(意: ,∴2q25q2=,∵q>∴ ,∴数列{an}的通项公式为 .-12-(Ⅱ) ,∴ ,= ,两减得∴ = .18.为了认真,学某校高三年级随机抽取了100总整理得到的布.(Ⅰ)中求a天了生的取的10名学生学选数X列学;设个段估的10名习间)解:(Ⅰ)(.5.01+030+0002)×=以=2.因为0.2××100=0,有.-13-A,A,, .为5和3.以X为
, .以X 0 1 2 3望 .(Ⅲ的100锥DD∠AC= BD=D=2,面面段C点 面M面D(形ABCD且ADCAD=BD=2,以B= ,又CD=∠BD=4°,理,= ,以CD2=D+BC2故CBD,-14-又因为CDPDB=D,,⊂面,以BC面D,为B⊂面PBC,所以面PBD面PBC;(2设E为D的结PE,因为PB==以P⊥DP=,由(面AD面PB面ABCD∩平面PB=D,以P面AD,以点A为坐,则(00,B020C(,,0D2,,P(,,2,为 以 以 ,平面PBD的一个法为 ,设平面ABM的法向量为 ,为 , ,有 即 ,令x1则y0,z﹣故 ,以 ,故平面ABM面PBD所成锐二面角的大为.20知F1F2圆C: =1(>b0是是.(1圆1;(2标圆x2+(+)21圆C1于A若圆C1-15-上一点P满足 ,求数λ2的取值范.解:(1得22且 ,所以=2,=,则b2=a﹣c2=,所以圆C1的为 ;(2)设A(x1,y1),B(x2,y2),P(x0,y0),由 ,则x1+x2=λx0,y1+y2=λy0,且 …①又因为直线y=k(x+t),(kt≠0)与圆相切,所以 ,即k=)②立程 ,消去y整理可得:(4+3k2)x2+6k2tx+3k2t2﹣12=0,所以x ,所以y ,以P﹣ ),①得 ,②③得 ,±1,0() ()2++13,所以λ∈(, .21.已知函数f(x)=2x3+3(1+m)x2+6mx(x∈R).(1)讨论函数f(x)的单调性;(2若(1=5,函数(x=(lnx+1﹣ ≤0(数a.解:(1)f′(x)=6x2+6(1+m)x+6m=6(x+1)(x+m),①当m=1时,f′(x)≥0,f(x)在R上单调递增;-16-当m>1时,m<令f(x=0⇒或x﹣,有f(>0﹣m或x﹣1数(x;(<0m<x﹣数f(减;当m<1时,m>,f(x=x﹣或x﹣,有f(x>0﹣1或x﹣此时函数(为调增;(x<0⇒1<x﹣m,此时函数(x;,=1,f(在R上;m1,(m﹣,﹣﹣1递;m1,(﹣和,﹣1m)递.(2由f(=2+3(m+m5m=以f(x=2x+3x,因当∈(+∞,lnx+>,所以()(lnx1﹣即
≤0(1+∞)上,1+∞,此时令(x= (x1,)有a≤x)mn,∵令(x=2l﹣
= ,(x>有F(x= >0,即得F((,+,又因为(2=2n﹣<,(e=2﹣>,故可得h(x=0在(+∞)根x0且2x0<,时 ,所以当1x<x0,h(x<0数(当xx0时,h(x>0此时函数hx递,因此得(x)inh(x= =2x0<e-7-从而可得a<2x0<2e,所以:当a=5时,不等式g(x)≤0不恒成立;当a=4时,不等式g(x)≤0恒成立;有数a的为.修22.已知在平面直角坐标系xOy中,直线l的参数方程为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为
(t为.(1)线l的普通曲线C的直;(2)知P2,线l与曲线C相于AB两点,求 值.:1由 (t为参
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度二人合作开展国际贸易业务协议2篇
- 公司员工劳动合同
- 手足口病对症护理
- 2024版建筑工程施工噪声控制承包合同
- 钢管及扣件租赁合同范本
- 二零二四年度婚前财产分配协议3篇
- 2024年度房屋共有权转移合同3篇
- 基于2024年度云计算服务提供合同
- 医疗信息安全制度
- 二零二四年度钢筋混凝土模板施工安全协议2篇
- 四年级语文下册第六单元【集体备课】(教材解读+教学设计)
- 高中物理 人教版 必修三《电磁感应与电磁波初步》第2课时《磁感应强度 磁通量》 课件
- 小学英语单词完整版
- 劳动合同.岗聘分离拆分工资
- GB/T 9113-2010整体钢制管法兰
- GA 838-2009小型民用爆炸物品储存库安全规范
- 幼儿园食堂安全知识培训测试题附答案
- 《第一单元 行进之歌-欣赏-☆中国人民解放军进行曲课件》初中音乐人音版七年级下册221
- 连加、连减、加减混合应用题
- 数字营销项目创业计划书
- 《CI设计》教学课件(全)
评论
0/150
提交评论