2023届吉林省通化市数学高二下期末监测模拟试题含解析_第1页
2023届吉林省通化市数学高二下期末监测模拟试题含解析_第2页
2023届吉林省通化市数学高二下期末监测模拟试题含解析_第3页
2023届吉林省通化市数学高二下期末监测模拟试题含解析_第4页
2023届吉林省通化市数学高二下期末监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.荷花池中,有一只青蛙在成“品”字形的三片荷叶上跳来跳去(每次跳跃时,均从一片荷叶跳到另一片荷叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图所示.假设现在青蛙在荷叶上,则跳三次之后停在荷叶上的概率是()A. B. C. D.2.《红海行动》是一部现代海军题材影片,该片讲述了中国海军“蛟龙突击队”奉命执行撤侨任务的故事.撤侨过程中,海军舰长要求队员们依次完成六项任务,并对任务的顺序提出了如下要求:重点任务必须排在前三位,且任务、必须排在一起,则这六项任务的不同安排方案共有()A.240种 B.188种 C.156种 D.120种3.已知集合A={x|x<1},B={x|<1},则A∩B=()A.{x|x<0} B.(x|x>0} C.{x|x>1} D.{x|x<1}4.把10个苹果分成三堆,要求每堆至少1个,至多5个,则不同的分法共有()A.4种 B.5种 C.6种 D.7种5.已知直线与抛物线交于、两点,若四边形为矩形,记直线的斜率为,则的最小值为().A.4 B. C.2 D.6.设是含数的有限实数集,是定义在上的函数,若的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,的可能取值只能是()A. B. C. D.7.已知为的一个对称中心,则的对称轴可能为()A. B. C. D.8.已知单位向量的夹角为,若,则为()A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形9.函数的图象向右平移个单位后所得的图象关于原点对称,则可以是()A. B. C. D.10.随机变量,且,则()A.64 B.128 C.256 D.3211.一根细金属丝下端挂着一个半径为1cm的金属球,将它浸没底面半径为2cm的圆柱形容器内的水中,现将金属丝向上提升,当金属球被拉出水面时,容器内的水面下降了()A.cm B.cm C.cm D.cm12.设是含数1的有限实数集,是定义在上的函数,若的图像绕原点逆时针旋转后与原图像重合,则在以下各项中,的可能值只能是().A.0 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.根据如图所示的伪代码,最后输出的i的值为________.14.设的三边长分别为,的面积为,内切圆半径为,则;类比这个结论可知:四面体的四个面的面积分别为,内切球的半径为,四面体的体积为,则__________.15.一个兴趣学习小组由12男生6女生组成,从中随机选取3人作为领队,记选取的3名领队中男生的人数为X,则X的期望EX=16.已知函数f(x)=||,实数m,n满足0<m<n,且f(m)=f(n),若f(x)在[m2,n]上的最大值为2,则=________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知四棱锥的底面为直角梯形,,,,,底面,为的中点.(1)求异面直线与所成角的余弦值;(2)设是棱上的一点,当平面时,求直线与平面所成角的正弦值.18.(12分)如图,在四棱锥中,底面是直角梯形,且,.(1)证明:平面;(2)求平面与平面所成锐二面角的余弦值.19.(12分)从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同.(Ⅰ)若抽取后又放回,抽3次.(ⅰ)分别求恰2次为红球的概率及抽全三种颜色球的概率;(ⅱ)求抽到红球次数的数学期望及方差.(Ⅱ)若抽取后不放回,写出抽完红球所需次数的分布列.20.(12分)已知函数.(1)当时,求函数的单调区间;(2)是否存在实数a,使函数在上单调递增?若存在,求出a的取值范围;若不存在,请说明理由.21.(12分)甲乙两名选手在同一条件下射击,所得环数的分布列分别为678910P0.160.140.420.10.18678910P0.190.240.120.280.17(I)分别求两名选手射击环数的期望;(II)某比赛需从二人中选一人参赛,已知对手的平均水平在7.5环左右,你认为选谁参赛获胜可能性更大一些?22.(10分)选修4-4:坐标系与参数方程直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2(sinθ+cosθ),直线l的参数方程为:(Ⅰ)写出圆C和直线l的普通方程;(Ⅱ)点P为圆C上动点,求点P到直线l的距离的最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

根据条件先求出逆时针和顺时针跳的概率,然后根据跳3次回到A,则应满足3次逆时针或者3次顺时针,根据概率公式即可得到结论.【详解】设按照顺时针跳的概率为p,则逆时针方向跳的概率为2p,则p+2p=3p=1,解得p=,即按照顺时针跳的概率为,则逆时针方向跳的概率为,若青蛙在A叶上,则跳3次之后停在A叶上,则满足3次逆时针或者3次顺时针,①若先按逆时针开始从A→B,则对应的概率为××=,②若先按顺时针开始从A→C,则对应的概率为××=,则概率为+==,故选:C.【点睛】本题考查相互独立事件的概率乘法公式,属于基础题.2、D【解析】当E,F排在前三位时,=24,当E,F排后三位时,=72,当E,F排3,4位时,=24,N=120种,选D.3、A【解析】

分别求出集合A,B,由此能求出A∩B.【详解】∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0}.故选:A.【点睛】本题考查交集的求法及指数不等式的解法,考查运算求解能力,是基础题.4、A【解析】试题分析:分类:三堆中“最多”的一堆为5个,其他两堆总和为5,每堆最至少1个,只有2种分法.三堆中“最多”的一堆为4个,其他两堆总和为6,每堆最至少1个,只有2种分法.三堆中“最多”的一堆为3个,那是不可能的.考点:本题主要考查分类计数原理的应用.点评:本解法从“最多”的一堆分情况考虑开始,分别计算不同分法,然后求和.用列举法也可以,形象、直观易懂.5、B【解析】

设直线方程并与抛物线方程联立,根据,借助韦达定理化简得.根据,相互平分,由中点坐标公式可得,即可求得,根据基本不等式即可求得最小值.【详解】设,,设直线:将直线与联立方程组,消掉:得:由韦达定理可得:┄①,┄②,故,可得:┄③,,是上的点,,可得:┄④由③④可得:,结合②可得:和相互平分,由中点坐标公式可得,结合①②可得:,,故,根据对勾函数(对号函数)可知时,.(当且仅当)时,.(当且仅当)所以.故选:B.【点睛】本题主要考查直线与圆锥曲线的位置关系的应用问题,通过联立直线方程与抛物线方程的方程组,应用一元二次方程根与系数的关系,得到“目标函数”的解析式,确定函数的性质进行求解.6、B【解析】

利用函数的定义即可得到结果.【详解】由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1)=,,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,故选B.【点睛】本题考查函数的定义,即“对于集合A中的每一个值,在集合B中有唯一的元素与它对应”(不允许一对多).7、B【解析】

由题意首先确定的值,然后求解函数的对称轴即可.【详解】由题意可知,当时,,据此可得:,令可得,则函数的解析式为,函数的对称轴满足:,解得:,令可知函数的一条对称轴为,且很明显选项ACD不是函数的对称轴.本题选择B选项.【点睛】本题主要考查三角函数解析式的求解,三角函数对称轴方程的求解等知识,意在考查学生的转化能力和计算求解能力.8、C【解析】,,与夹角为,且,为直角三角形,故选C.9、B【解析】

求出函数图象平移后的函数解析式,再利用函数图象关于原点对称,即,求出,比较可得.【详解】函数的图象向右平移个单位后得到.此函数图象关于原点对称,所以.所以.当时,.故选B.【点睛】由的图象,利用图象变换作函数的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象沿轴的伸缩量的区别.先平移变换再周期变换(伸缩变换),平移的量是个单位;而先周期变换(伸缩变换)再平移变换,平移的量是个单位.10、A【解析】

根据二项分布期望的计算公式列方程,由此求得的值,进而求得方差,然后利用方差的公式,求得的值.【详解】随机变量服从二项分布,且,所以,则,因此.故选A.【点睛】本小题主要考查二项分布期望和方差计算公式,属于基础题.11、D【解析】

利用等体积法求水面下降高度。【详解】球的体积等于水下降的体积即,.答案:D.【点睛】利用等体积法求水面下降高度。12、C【解析】

先阅读理解题意,则问题可转化为圆上有12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合,再结合函数的定义逐一检验即可.【详解】解:由题意可得:问题可转化为圆上有12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合,则通过代入和赋值的方法,当时,此时得到圆心角为,然而此时或时,都有2个与之对应,根据函数的定义,自变量与应变量只能“一对一”或“多对一”,不能“一对多”,因此,只有当时,此时旋转,满足一个对应一个,所以的可能值只能是,故选:C.【点睛】本题考查了函数的定义,重点考查了函数的对应关系,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出满足条件T=1+3+5+7时i的值.详解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加T=1+3+5+7,并输出满足条件时i值.∵T=1+3+5+7=16≥10,故输出的i值为7+2=1.故答案为1.点睛:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.14、.【解析】

根据平面和空间的类比推理,由点类比点或直线,由直线类比直线或平面,由内切圆类比内切球,由平面图形的面积类比立体图形的体积,结合三角形面积的求法求出三棱锥的体积,进而求出内切球的半径为.【详解】设四面体的内切球的球心为,则球心到四个面的距离都为,所以四棱锥的体积等于以为顶点,四个面为底面的四个小三棱锥的体积之和,则四面体的体积为.【点睛】本题考查了类比推理.类比推理是指依据两类数学对象的相似性,将已知一类的数学对象的性质迁移到另一个数学对象上去.15、2【解析】试题分析:由题意X的可能取值为0,1,2,3,P(X=0)=C6P(X=1)=C12P(X=2)=C12P(X=3)=C12∴E(X)=0×20816+1×180816+2×396816考点:离散型随机变量的期望与方差16、9.【解析】

先分析得到f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,再分析得到0<m2<m<1,则f(x)在[m2,1)上单调递减,在(1,n]上单调递增,再根据函数的单调性得到m,n的值,即得解.【详解】因为f(x)=|log3x|=,所以f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,由0<m<n且f(m)=f(n),可得,则,所以0<m2<m<1,则f(x)在[m2,1)上单调递减,在(1,n]上单调递增,所以f(m2)>f(m)=f(n),则f(x)在[m2,n]上的最大值为f(m2)=-log3m2=2,解得m=,则n=3,所以=9.故答案为9【点睛】本题主要考查函数的图像和性质,考查函数的单调性的应用和最值的求法,意在考查学生对这些知识的理解掌握水平,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

以点为坐标原点,以直线,,分别为,,轴建立空间直角坐标系(1)由可得异面直线与所成角的余弦值.(2)当平面时,设,要使平面,只需即可.即可得即为的中点,即,由即可求得直线与平面所成角的正弦值.【详解】解:以点为坐标原点,以直线,,分别为,,轴建立空间直角坐标系.则,,,,,.(1),.则异面直线与所成角的余弦值为.(2)当平面时,设.,,,面.要使平面,只需即可.,.即为的中点,即,,平面的法向量为,则.直线与平面所成角的正弦值为.【点睛】本题考查了异面直线所成角,考查了线面角.本题的易错点是第二问中,错把当成了线面角.18、(1)证明见解析;(2).【解析】

(1)推导出PA⊥AD,PA⊥AB,由此能证明PA⊥平面ABCD.(2)以A为原点,AB,AD,AP为x,y,z轴的正方向建立空间直角坐标系,利用向量法能求出平面PBC与平面PAD所成锐二面角的余弦值.【详解】(1)因为,所以,即.同理可得.因为.所以平面.(2)由题意可知,两两垂直,故以A为原点,分别为轴的正方向建立如图所示的空间直角坐标系,则,所以.设平面的法向量为,则,不妨取则易得平面,所以平面的一个法向量为,记平面与平面所成锐二面角为,则故平面与平面所成锐二面角的余弦值为.【点睛】本题考查线面垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.19、(1)①;②见解析;(2)见解析.【解析】分析:(1)(ⅰ)放回事件是独立重复试验,根据独立重复试验概率公式求结果,(ⅱ)抽到红球次数服从二项分布,根据二项分布期望与方差公式求结果,(2)先确定随机变量取法,再根据组合数求对应概率,列表可得分布列.详解:(1)抽1次得到红球的概率为,得白球的概率为得黑球的概率为①所以恰2次为红色球的概率为抽全三种颜色的概率②~B(3,),则,(2)的可能取值为2,3,4,5,,,即分布列为:2345P点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布),则此随机变量的期望可直接利用这种典型分布的期望公式()求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论