2022-2023学年广东省东华高级中学高二数学第二学期期末教学质量检测模拟试题含解析_第1页
2022-2023学年广东省东华高级中学高二数学第二学期期末教学质量检测模拟试题含解析_第2页
2022-2023学年广东省东华高级中学高二数学第二学期期末教学质量检测模拟试题含解析_第3页
2022-2023学年广东省东华高级中学高二数学第二学期期末教学质量检测模拟试题含解析_第4页
2022-2023学年广东省东华高级中学高二数学第二学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,是奇函数,则()A.在上单调递减 B.在上单调递减C.在上单调递增 D.在上单调递增2.已知随机变量,则参考数据:若,A.0.0148 B.0.1359 C.0.1574 D.0.3148.3.已知,且,则的取值范围为()A. B. C. D.4.已知,则()附:若,则,A.0.3174 B.0.1587 C.0.0456 D.0.02285.对相关系数,下列说法正确的是()A.越大,线性相关程度越大B.越小,线性相关程度越大C.越大,线性相关程度越小,越接近0,线性相关程度越大D.且越接近1,线性相关程度越大,越接近0,线性相关程度越小6.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7 C.8,15,12,5 D.8,16,10,67.下列命题中,假命题是()A.不是有理数 B.C.方程没有实数根 D.等腰三角形不可能有的角8.已知集合,,则集合中元素的个数为()A.2 B.3 C.4 D.59.已知,,,则,,的大小关系为()A. B.C. D.10.某单位为了了解办公楼用电量y(度)与气温x(℃)之间的关系,随机统计了四个工作量与当天平均气温,并制作了对照表:气温(℃)181310-1用电量(度)24343864由表中数据得到线性回归方程y=-2x+a,当气温为A.68度 B.52度 C.12度 D.28度11.在Rt△ABC中,AC=1,BC=x,D是斜边AB的中点,将△BCD沿直线CD翻折,若在翻折过程中存在某个位置,使得CB⊥AD,则x的取值范围是()A. B. C. D.(2,4]12.已知a,b∈R,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知函数为偶函数,且在单调递减,则的解集为________.14.已知直线在矩阵对应的变换作用下变为直线:,则直线的方程为__________.15.已知函数,若,则实数的取值范围是______.16.已知复数的共轭复数是,且,则的虚部是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,().(1)当时,求的单调区间;(2)设点,是函数图象的不同两点,其中,,是否存在实数,使得,且函数在点切线的斜率为,若存在,请求出的范围;若不存在,请说明理由.18.(12分)设函数().(Ⅰ)当时,求不等式的解集;(Ⅱ)求证:,并求等号成立的条件.19.(12分)已知复数为虚数单位.(1)若复数对应的点在第四象限,求实数的取值范围;(2)若,求的共轭复数.20.(12分)3名男生、2名女生站成一排照相:(1)两名女生都不站在两端,有多少不同的站法?(2)两名女生要相邻,有多少种不同的站法?21.(12分)已知为函数的导函数,.(1)求的单调区间;(2)当时,恒成立,求的取值范围.22.(10分)已知椭圆的一个焦点为,左右顶点分别为,经过点的直线与椭圆交于两点.(Ⅰ)求椭圆方程;(Ⅱ)记与的面积分别为和,求的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】分析:因为是奇函数,所以,故,令,则的单调减区间为,从而可以知道在上单调递减.详解:,因是奇函数,故,也即是,化简得,所以,故,从而,又,故,因此.令,,故的单调减区间为,故在上单调递减.选B.点睛:一般地,如果为奇函数,则,如果为偶函数,则.2、B【解析】

根据正态分布函数的对称性去分析计算相应概率.【详解】因为即,所以,,又,,且,故选:B.【点睛】本题考查正态分布的概率计算,难度较易.正态分布的概率计算一般都要用到正态分布函数的对称性,根据对称性,可将不易求解的概率转化为易求解的概率.3、D【解析】

由三个正数的和为21,可知三个正数的平均数为7,因此可以用反证法来求出的取值范围.【详解】由三个正数的和为21,可知三个正数的平均数为7,假设,因为,则有,这与,相矛盾,故假设不成立,即,故本题选D.解法二:因为,所以【点睛】本题考查了反证法的应用,正确运用反证法的过程是解题的关键.4、D【解析】

由随机变量,所以正态分布曲线关于对称,再利用原则,结合图象得到.【详解】因为,所以,所以,即,所以.选D.【点睛】本题主要考查正态分布曲线及原则,考查正态分布曲线图象的对称性.5、D【解析】

根据两个变量之间的相关系数r的基本特征,直接选出正确答案即可.【详解】用相关系数r可以衡量两个变量之间的相关关系的强弱,|r|≤1,r的绝对值越接近于1,表示两个变量的线性相关性越强,r的绝对值接近于0时,表示两个变量之间几乎不存在相关关系,故选D.【点睛】本题考查两个变量之间相关系数的基本概念应用问题,是基础题目.6、D【解析】试题分析:由题意,得抽样比为,所以高级职称抽取的人数为,中级职称抽取的人数为,初级职称抽取的人数为,其余人员抽取的人数为,所以各层中依次抽取的人数分别是8人,16人,10人,6人,故选D.考点:分层抽样.【方法点睛】分层抽样满足“”,即“或”,据此在已知每层间的个体数量或数量比,样本容量,总体数量中的两个时,就可以求出第三个.7、D【解析】

根据命题真假的定义,对各选项逐一判定即可.【详解】解:.为无理数,故正确,.,故正确,.因为,即方程没有实根,故正确,.等腰三角形可能以为顶角,为底角,故错误,故选:.【点睛】本题考查命题真假的判断,属于基础题.8、D【解析】由题意得,根据,可得的值可以是:,共有5个值,所以集合中共有5个元素,故选D.考点:集合的概念及集合的表示.9、C【解析】

根据的单调性判断的大小关系,由判断出三者的大小关系.【详解】由,,,则.故选C.【点睛】本小题主要考查对数运算,考查对数函数的单调性,考查对数式比较大小,属于基础题.10、A【解析】由表格可知x=10,y=40,根据回归直线方程必过(x,y)得a11、A【解析】

由,取的中点E,翻折前,连接,则,,翻折后,在图2中,此时,及,进而得到,由此可求解得取值范围,得到答案.【详解】由题意得,取的中点E,翻折前,在图1中,连接,则,翻折后,在图2中,此时,因为,所以平面,所以,又为的中点,所以,所以,在中,可得①;②;③,由①②③,可得.如图3,翻折后,当与在一个平面上,与交于,且,又,所以,所以,此时,综上可得的取值范围是,故选A.【点睛】本题主要考查了平面图形的翻折问题,以及空间几何体的结构特征的应用,其中解答中认真审题,合理利用折叠前后图形的线面位置关系是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.12、A【解析】

根据复数的基本运算,结合充分条件和必要条件的定义进行判断即可.【详解】解:因为,若,则等式成立,即充分性成立,若成立,即,所以解得或即必要性不成立,则“”是“”的充分不必要条件,故选:A.【点睛】本题主要考查充分条件和必要条件的判断,结合复数的基本运算是解决本题的关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:先根据函数为偶函数分析得到a=b,再根据在单调递减得到a<0,再解不等式得其解集.详解:因为函数为偶函数,所以所以,由于函数f(x)在单调递减,所以a<0.因为,所以故答案为:.点睛:(1)本题主要考查函数的单调性和奇偶性,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题时要注意细心,解不等式,两边同时除以a时,要注意不等式要改变方向.14、【解析】分析:用相关点法求解,设直线上的点为直线上的点为,所以,,代入直线的方程详解:设直线上的点为直线上的点为,直线在矩阵对应的变换作用下所以:,代入直线的方程整理可得直线的方程为。点睛:理解矩阵的计算规则和相互之间的转换。15、【解析】

根据题意,求得,解不等式即可求得结果.【详解】容易知,故可得,故等价于,解得.故答案为:.【点睛】本题考查分段函数函数值的求解,涉及二次不等式的求解,属综合基础题.16、【解析】

设复数,代入等式得到答案.【详解】设复数故答案为【点睛】本题考查了复数的化简,共轭复数,复数的模,意在考查学生的计算能力和对复数知识的灵活运用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)的增区间为,减区间为;(2)存在实数取值范围是.【解析】

(1)分别研究,两种情况,先对函数求导,利用导数的方法判断其单调性,即可得出结果;(2)先由题意,得到,再根据,得到,得出,再由导数的几何意义,结合题中条件,得到,构造函数,用导数的方法研究函数的单调性,进而可得出结果.【详解】(1)当时,,令得,令得.当时,,所以在上是增函数。所以当时,的增区间为,减区间为;(2)由题意可得:,,所以,,令,则在单调递增,单调递减,,当时,,所以存在实数取值范围是.【点睛】本题主要考查导数的应用,通常需要对函数求导,用导数的方法研究单调性,最值等,属于常考题型.18、(Ⅰ)(Ⅱ)见证明【解析】

(Ⅰ)把代入不等式中,利用零点进行分类讨论,求解出不等式的解集;(Ⅱ)证法一:对函数解析式进行变形为,,显然当时,函数有最小值,最小值为,利用基本不等式,可以证明出,并能求出等号成立的条件;证法二:利用零点法把函数解析式写成分段函数形式,求出函数的单调性,最后求出函数的最小值,以及此时的的值.【详解】解:(Ⅰ)当时,原不等式等价于,当时,,解得当时,,解得当时,,无实数解原不等式的解集为(Ⅱ)证明:法一:,当且仅当时取等号又,当且仅当且时,即时取等号,,等号成立的条件是法二:在上单调递减,在上单调递增,等号成立的条件是【点睛】本题考查了绝对值不等式的解法以及证明绝对值不等式,利用零点法,分类讨论是解题的关键.19、(1);(2)【解析】试题分析:(1)求出复数的代数形式,根据第四象限的点的特征,求出的范围;(2)由已知得出,代入的值,求出.试题解析;(I)=,由题意得解得(2)20、(1)(2)【解析】

(1)先选两个男生放在两端,剩余一个男生和两个女生全排列;(2)两名女生看成一个整体,然后和三名男生全排列,注意两个女生之间也要全排.【详解】解:(1)由已知得.(2)由已知得.【点睛】排列组合组合问题中,要注意一个原则:特殊元素优先排列,当优先元素的问题解决后,后面剩余的部分就比较容易排列组合.21、(1)在上单调递减;在上单调递增.(2)【解析】分析:(1)首先令,求得,再对函数求导,令,得,从而确定函数解析式,并求得,之后根据导数的符号对函数的单调性的决定性作用,求得函数的单调区间;(2)构造新函数,将不等式恒成立问题向函数的最值转化,对参数进行分类讨论,确定函数的单调区间,确定函数的最值点,最后求得结果.详解:(1)由,得.因为,所以,解得.所以,,当时,,则函数在上单调递减;当时,,则函数在上单调递增.(2)令,根据题意,当时,恒成立..①当,时,恒成立,所以在上是增函数,且,所以不符合题意;②当,时,恒成立,所以在上是增函数,且所以不符合题意;③当时,因为,所有恒有,故在上是减函数,于是“对任意都成立”的充要条件是,即,解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论