高二数学之数学人教A版选修4-1课件:3.3-平面与圆锥面的截线_第1页
高二数学之数学人教A版选修4-1课件:3.3-平面与圆锥面的截线_第2页
高二数学之数学人教A版选修4-1课件:3.3-平面与圆锥面的截线_第3页
高二数学之数学人教A版选修4-1课件:3.3-平面与圆锥面的截线_第4页
高二数学之数学人教A版选修4-1课件:3.3-平面与圆锥面的截线_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

平面与圆锥面的截线高二数学PPT之数学人教A版选修4-1课件:3.3平面与圆锥面的截线1.了解不平行于底面且不通过圆锥的顶点的平面截圆锥的形状是椭圆、抛物线、双曲线.2.感受平面截圆锥的形状,并从理论上证明.3.通过Dandelin双球探求双曲线的性质,理解这种证明问题的方法.1231.定理2123123名师点拨2.圆锥曲线的统一性,椭圆为封闭图形,双曲线、抛物线为不封闭图形,其图形不一样,但它们都可以用平面截对顶圆锥面得到,因此,圆、椭圆、双曲线、抛物线统称为圆锥曲线.它们都满足曲线上的点到焦点的距离与到准线的距离之比为常数,即离心率e.1232.圆锥曲线的结构特点(1)椭圆上的点到两个定点(焦点)的距离之和为常数(长轴长2a).(2)双曲线上的点到两个定点(焦点)的距离之差的绝对值为常数(2a).(3)抛物线上的点到一个定点(焦点)和一条定直线的距离相等.【做一做1】

双曲线上任意一点到两个焦点的距离分别是d1和d2,则下列为常数的是(

)A.d1-d2 B.d1+d2C.|d1-d2| D.d2-d1答案:C1233.圆锥曲线的几何性质(1)焦点:Dandelin球与平面π的切点.(2)准线:截面与Dandelin球和圆锥交线所在平面的交线.123(4)圆锥曲线的几何性质

123【做一做2-1】

设截面和圆锥的轴的夹角为β,圆锥的母线和轴所成角为α,当截面是椭圆时,其离心率等于(

)答案:B【做一做2-2】

双曲线的焦距为4,实轴长为3,则离心率e=

.

解析:设双曲线的实轴长、虚轴长、焦距分别为2a,2b,2c,则2c=4,2a=3,在定理2中,当β<α时,探究截线形状剖析:如图,当β<α时,平面π与圆锥面的两部分相交,在圆锥的两部分分别嵌入Dandelin球,与平面π的两个切点分别为F1,F2,与圆锥两部分截的圆分别为S1,S2.在截口上任取一点P,连接PF1,PF2.过点P和圆锥的顶点O作母线,分别与两球切于Q1,Q2点,则PF1=PQ1,PF2=PQ2,所以|PF1-PF2|=|PQ1-PQ2|=Q1Q2,所以Q1Q2是两圆S1,S2所在平行平面间的母线段的长,且为定值.所以由双曲线的定义知,点P的轨迹为双曲线.题型一题型二题型三【例1】

如图,讨论其中双曲线的离心率.其中π'是Dandelin球与圆锥交线S2所在的平面,与π的交线为m.题型一题型二题型三解:点P是双曲线上任意一点,连接PF2,过点P作PA⊥m于点A,连接AF2,过点P作PB⊥平面π'于点B,连接AB,过点P作母线交S2于点Q2.∵PB平行于圆锥的轴,∴∠BPA=β,∠BPQ2=α.反思讨论圆锥曲线的几何性质时,要注意结合图形进行.题型一题型二题型三【变式训练1】

在圆锥内部嵌入Dandelin双球,一个位于平面π的上方,一个位于平面π的下方,并且与平面π及圆锥均相切.若平面π与双球的切点不重合,则平面π与圆锥面的截线是(

)A.圆 B.椭圆 C.双曲线 D.抛物线解析:由于平面π与双球的切点不重合,则平面π与圆锥母线不平行,且只与圆锥的一半相交,则截线是椭圆.答案:B题型一题型二题型三【例2】

已知双曲线两个顶点间的距离为2a,焦距为2c,求两条准线间的距离.解:如图,l1,l2是双曲线的准线,F1,F2是焦点,A1,A2是顶点,O为中心.题型一题型二题型三题型一题型二题型三【变式训练2】

顶角为60°的圆锥面中有一个半径为2的内切球,以该球为焦球作一截面,使截线为抛物线,求该抛物线的顶点到焦点的距题型一题型二题型三解:如图是圆锥的截面,其中点P为抛物线的顶点,点Q为抛物线的焦点,点M为截面与轴的交点,连接OA,OQ.设A,B为球与圆锥的母线的切点.由∠ASB=60°,∴∠ASO=30°.又OA=2,OA⊥SA,∴OS=4,易知OP⊥OS,又PM∥SB,∴∠PMS=∠OSB=∠OSA,∴SM=2OS=8.题型一题型二题型三易错点:错用圆锥曲线的离心率公式而致错【例3】

已知圆锥面的轴截面为等腰直角三角形,用一个与轴线成30°角的不过圆锥顶点的平面去截圆锥面时,所截得的截线的离心率为(

)错解:因为圆锥面的截面为等腰直角三角形,所以母线与轴线的夹角为45°.又因为截面与轴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论