河南省南阳市固县中学高二数学文期末试题含解析_第1页
河南省南阳市固县中学高二数学文期末试题含解析_第2页
河南省南阳市固县中学高二数学文期末试题含解析_第3页
河南省南阳市固县中学高二数学文期末试题含解析_第4页
河南省南阳市固县中学高二数学文期末试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省南阳市固县中学高二数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在△ABC中,若sin2A=sinB·sinC,且(b+c+a)(b+c-a)=3bc,则该三角形的形状是

A.直角三角形

B.钝角三角形

C.等腰三角形

D.等边三角形参考答案:D2.设P为双曲线x2﹣=1上的一点,F1,F2是该双曲线的两个焦点.若|PF1|:|PF2|=3:2,则△PF1F2的面积为()A. B.12 C. D.24参考答案:B【考点】双曲线的简单性质.【分析】根据双曲线定义得|PF1|﹣|PF2|=2a=2,所以,再由△PF1F2为直角三角形,可以推导出其面积.【解答】解:因为|PF1|:|PF2|=3:2,设|PF1|=3x,|PF2|=2x,根据双曲线定义得|PF1|﹣|PF2|=3x﹣2x=x=2a=2,所以,,△PF1F2为直角三角形,其面积为,故选B.3.设z1、z2∈C,则“z1、z2均为实数”是“z1﹣z2是实数”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件参考答案:A【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义结合复数的有关概念进行判断即可.【解答】解:若z1、z2均为实数,则z1﹣z2是实数,即充分性成立,当z1=i,z2=i,满足z1﹣z2=0是实数,但z1、z2均为实数不成立,即必要性不成立,故“z1、z2均为实数”是“z1﹣z2是实数”的充分不必要条件,故选:A.4.如图,直三棱柱ABC-中,ABAC,M是CC的中点,Q是BC的中点,P是的中点,则直线PQ与AM所成的角(

)A

B

C

D参考答案:D5.已知i为虚数单位,a∈R,若(a-1)(a+1+i)=a2-1+(a-1)i是纯虚数,则a的值为(

)A.-1或1

B.1

C.3

D.-1参考答案:D6.某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是(

)(A)10

(B)11

(C)12

(D)16参考答案:D略7.若,则函数有(

)A.最大值-3 B.最大值3 C.最小值3 D.最小值-3参考答案:A8.动点在圆上移动时,它与定点连线的中点的轨迹方程是(

)A.

B.

C.

D.参考答案:C略9.下列求导计算正确的是(

)A. B. C. D.参考答案:B【分析】根据函数求导法则得到相应的结果.【详解】A选项应为,C选项应为,D选项应为.故选:B.【点睛】这个题目考查了函数的求导运算,牢记公式,准确计算是解题的关键,属于基础题.10.若,则下列不等式①;

②;

③;

④;

⑤,对一切满足条件的恒成立的所有正确命题是(

)A.①②③

B.①③⑤

C.①②④

D.③④⑤参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.函数的定义域为

.参考答案:略12.若椭圆的离心率为,则它的长半轴长为_______________

参考答案:1或213.已知数列的前项和为,若(是常数),则数列是等比数列的充要条件是

.

参考答案:略14.设O为坐标原点,向量,,,点Q在直线OP上运动,则当取得最小值时,点Q的坐标为().参考答案:【考点】空间向量的数量积运算.【分析】由已知中O为坐标原点,向量,,,点Q在直线OP上运动,我们可以设=λ=(λ,λ,2λ),求出向量,的坐标,代入空间向量的数量积运算公式,再根据二次函数的性质,可得到满足条件的λ的值,进而得到点Q的坐标.【解答】解:∵,点Q在直线OP上运动,设=λ=(λ,λ,2λ)又∵向量,,∴=(1﹣λ,2﹣λ,3﹣2λ),=(2﹣λ,1﹣λ,2﹣2λ)则?=(1﹣λ)×(2﹣λ)+(2﹣λ)×(1﹣λ)+(3﹣2λ)×(2﹣2λ)=6λ2﹣16λ+10易得当λ=时,取得最小值.此时Q的坐标为()故答案为:()15.设点P为有公共焦点F1、F2的椭圆M和双曲线Γ的一个交点,,椭圆M的离心率为e1,双曲线Γ的离心率为e2.若e2=2e1,则e1=.参考答案:【考点】椭圆的简单性质.【分析】由椭圆及双曲线的定义可知m+n=2a1,m﹣n=2a2.利用余弦定理,求得10=+,将e2=2e1,即可求得e1.【解答】解:设椭圆与双曲线的半长轴分别为a1,a2,半焦距为c.e1=,e2=.设|PF1|=m,|PF2|=n,不妨设m>n,则m+n=2a1,m﹣n=2a2.∴m2+n2=2+2,mn=﹣4c2=m2+n2﹣2mncos∠F1PF2,∴4c2=2+2﹣2(﹣)×.整理得:10c2=+9,∴10=+,又e2=2e1,∴40=13,e1∈(0,1).解得:e1=.∴椭圆的离心率e1=.故答案为:.16.用表示两数中的最小值,若函数,则不等式的解集是

.参考答案:17.已知为复数,为虚数单位,为纯虚数,,且,则复数_______________.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数.(1)讨论函数f(x)的单调性;(2)当时,,求证:.参考答案:(1)见解析;(2)证明见解析【分析】(1)由f(x)含有参数a,单调性和a的取值有关,通过分类讨论说明导函数的正负,进而得到结论;(2)法一:将已知变形,对a分类讨论研究的正负,当与时,通过单调性可直接说明,当时,可得g(x)的最大值为,利用导数解得结论.法二:分析时,且使得已知不成立;当时,利用分离变量法求解证明.【详解】(1),①当时,由得,得,所以在上单调递增;②当时,由得,解得,所以在上单调递增,在在上单调递减;(2)法一:由得(*),设,则,①当时,,所以在上单调递增,,可知且时,,,可知(*)式不成立;②当时,,所以在上单调递减,,可知(*)式成立;③当时,由得,所以在上单调递增,可知在上单调递减,所以,由(*)式得,设,则,所以在上单调递减,而,h(1)=1-2=-1<0,所以存在t,使得h(t)=0,由得;综上所述,可知.法二:由得(*),①当时,得,且时,,可知(*)式不成立;②当时,由(*)式得,即,设,则,设,则,所以在上单调递减,又,,所以,(**),当时,,得,所以在上递增,同理可知在上递减,所以,结合(**)式得,所以,综上所述,可知.【点睛】本题考查了利用导数研究函数的单调性及恒成立问题,涉及到了导数的应用、分类讨论、构造函数等方法技巧,属于较难题.19.(本小题满分12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老人,结果如下:

男女总计需要403070不需要160270430总计200300500(Ⅰ)估计该地区老年人中,需要志愿提供帮助的老年人的比例;(Ⅱ)能否有99℅的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关系?参考答案:解(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中需要帮助的老年人的比例的估计值为.

……4分(2)由于所以有99%的把握认为该地区的老年人是否需要帮助与性别有关.

……8分20.(12分)某商品每件成本9元,售价为30元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元)的平方成正比,已知商品单价降低2元时,一星期多卖出24件。(1)将一个星期的商品销售利润表示成的函数;(2)如何定价才能使一个星期的商品销售利润最大。参考答案:解:(1)设商品降价元,则多卖的商品数为,若记商品在一个星期的获利为,则依题意有,又由已知条件,,于是有,所以。(2)根据(1),我们有。21200减极小增极大减故时,达到极大值.因为,,所以定价为元能使一个星期的商品销售利润最大。略21.已知椭圆C以原点为对称中心、右焦点为F(2,0),长轴长为4,直线l:y=kx+m(k≠0)交椭圆C于不同点两点A,B.(1)求椭圆C的方程;(2)是否存在实数k,使线段AB的垂直平分线经过点Q(0,3)?若存在求出k的取值范围;若不存在,请说明理由.参考答案:【考点】椭圆的简单性质.【分析】(1)设椭圆C的方程为(a>b>0)由题意,得a2,b2,(2)假设存在斜率为k的直线,其垂直平分线经过点Q(0,3),设A(x1,y1)、B(x2,y2),AB的中点为N(x0,y0),由,得(1+2k2)x2+4mkx+2m2﹣8=0,△>0及kNQ?k=﹣1进行判定.【解答】解:(1)设椭圆C的方程为(a>b>0),由题意,得a2=8,b2=4,所以椭圆C的方程为.…(2)假设存在斜率为k的直线,其垂直平分线经过点Q(0,3),设A(x1,y1)、B(x2,y2),AB的中点为N(x0,y0),由,得(1+2k2)x2+4mkx+2m2﹣8=0,…△=16m2k2﹣4(1+2k2)(2m2﹣8)=64k2﹣8m2+32>0,所以8k2﹣m2+4>0,…,∴,,…∵线段AB的垂直平分线过点Q(0,3),∴kNQ?k=﹣1,即,∴﹣m=3+6k2,…∵△>0,整理得36k4+28k2+5<0,显然矛盾∴不存在满足题意的k的值.…22.在△ABC中,A,B,C的对边分别为a、b、c,C=,b=8,△ABC的面积为10.(Ⅰ)求c的值;(Ⅱ)求cos(B﹣C)的值.参考答案:【考点】余弦定理;两角和与差的余弦函数.【分析】(Ⅰ)由已知利用三角形面积公式可求a的值,进而利用余弦定理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论