版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Highlights
ThemicrobialnetworkassociationswerestrengthenedalongtheAMD-impactedriver.
Communityassemblyprocessesshiftedfromtheheadwaterstodownstream.
Relativemodularitywasessentialbioticfactorinshapingcommunitycomposition.
Strongsuccessioninprokaryoticassociationnetworksandcommunityassemblymechanismsinanacidminedrainage-impactedriverineecosystem
MengmengWanga,#,XiaonanWanga,#,SiningZhoua,ZifengChena,MengyunChena,ShiweiFenga,JintianLia,WenshengShua,BaichuanCaoa,*
aInstituteofEcologicalScienceandGuangdongProvincialKeyLaboratoryofBiotechnologyforPlantDevelopment,SchoolofLifeSciences,SouthChinaNormalUniversity,Guangzhou510631,China.
#Theseauthorscontributedequally:MengmengWang,XiaonanWang
*Towhomcorrespondencemaybeaddressed.E-mail:baichuanc@;Phone:
Runningtitle:MicrobialcommunitysuccessioninanAMD-impactedriver
Keywords:microbialcommunitysuccession,acidicminedrainage,communityassembly,microbialnetwork
Typeofarticle:Researcharticle
Abstract
Acidminedrainage(AMD)servesasanidealmodelsystemforinvestigatingmicrobialecology,interaction,andassemblymechanisminnaturalenvironments.WhilepreviousstudieshaveexploredthestructureandfunctionofmicrobialcommunitiesinAMD,thesuccessionpatternsofmicrobialassociationnetworksandunderlyingassemblymechanismsduringnaturalattenuationprocessesremainelusive.Here,weinvestigatedprokaryoticmicrobialdiversityandcommunityassemblyalonganAMD-impactedriver,fromtheextremelyacidic,heavilypollutedheadwaterstothenearlyneutraldownstreamsites.Microbialdiversitywasincreasedalongtheriver,andmicrobialcommunitycompositionshiftedfromacidophile-dominatedtofreshwatertaxa-dominatedcommunities.Thecomplexityandrelativemodularityofthemicrobialnetworkswerealsoincreased,indicatinggreaternetworkstabilityduringsuccession.Deterministicprocesses,includingabioticselectionofpHandhighcontentsofsulfurandiron,governedcommunityassemblyintheheadwaters.Althoughthestochasticityratiowasincreaseddownstream,manganesecontent,microbialnegativecohesion,andrelativemodularityplayedimportantrolesinshapingmicrobialcommunitystructure.Overall,thisstudyprovidesvaluableinsightsintotheecologicalprocessesthatgovernmicrobialcommunitysuccessioninAMD-impactedriverineecosystems.Thesefindingshaveimportantimplicationsforin-situremediationofAMDcontamination.
Introduction
Acidminedrainage(AMD),generatedfromthemicrobially-mediatedoxidativedissolutionofsulfide-containingmines,istypicallycharacterizedbyextremeacidity,highconcentrationsofmetal(loid)s,andsulfate(RothschildandMancinelli,2001).AMDcreatesaharshenvironmentforlifeandharborsmicrobialcommunitieswithrelativelylowdiversities,whicharecapableofadaptingandsurvivinginthisextremeenvironment(BakerandBanfield,2003).Asaresult,AMDservesasanidealmodelsystemforstudyingmicrobialecologyandevolutioninnaturalenvironments(Huangetal.,2016).WhiletheproblemofAMDpollutionissevereandwidespread,someAMD-impactedenvironmentsundergonaturalattenuationprocesses,suchasinpitlakes,waterreservoirs,streamsorrivers(Parketal.,2016).Decipheringthemechanismsthatunderliethebiogeochemistryandbioticandabioticinteractionsinthissystemwillprovidevaluablecluesforin-situremediationofAMDpollution.
AMDmicrobialcommunitiesaredominatedbyProteobacteria,NitrospiraandEuryarchaeota,includingironand/orsulfuroxidizerssuchasAcidithiobacillusspp.,Leptospirillumspp.,andFerrovumspp.(ShuandHuang,2021).AbiogeographicalstudyofgeochemicallydiverseAMDrevealedthatpHprimarilyshapedthemicrobialcommunitystructure,regardlessofgeographicalisolation(Kuangetal.,2013).Morerecently,microbialecologyresearchhasshifteditsfocustodecipheringthemicrobialinteractionsandassemblymechanismsunderlyingmicrobialcommunitydiversity,structureandbiogeography(ZhouandNing,2017).However,studyingmicrobialinteractionsposesasignificantchallengesincemostoftheseinteractionscannotbedirectlyobserved.Networkanalysishasprovenusefulininferringpotentialinteractionsbyidentifyingrobust,non-randomassociations(FaustandRaes,2012).
Thenetworkstructureandcomplexityhavebeendemonstratedtoaffectcommunitystabilityandecosystemfunctioning(ThebaultandFontaine,2010).AstudyconductedinanAMDlakefoundthatmicrobialnetworksmainlyconsistedofpositiveassociationswithlownetworkcomplexity,indicatingthatmicrobesmightcooperateindetoxificationorcross-feedinginresponsetoenvironmentalstress(Sheetal.,2021).Accordingly,deterministicfactors,suchashabitatfiltrationandselectionplayedamajorroleinshapingAMDmicrobialcommunitystructure.
AMDstreamsandriversareloticsystems,whicharedistinctfortheirrepresentationofacontinuousspatialandtemporalrangefromtheheadwaterstotherivermouth(Readetal.,2015).Theseenvironmentsreceiveadditionalinputsfrombothnaturalandanthropogenicsourcesduringthetransition,andbiologicaldispersaloccurredthroughwatermovement,unlikemostterrestrialecosystemswheredispersalislimited(Marietal.,2014).Therefore,therulesgoverningmicrobialbiogeographyandsuccessioninmorestaticenvironmentssuchasAMDsoils,tailings,sediments,ordiscreteAMDstreamsmaynotbeapplicabletotheconstantturnoverandsuccessioninAMDstreamsorrivers.PollutantsinAMD-impactedriver,suchasacidity,sulfate,andheavymetals,tendedtodecreasefromheadwaterstodownstreamduetoprecipitationandadsorptionintosediments,orwaterdilution(Linetal.,2007).Correspondingly,bacterialdiversityandtheabundancesofmetal-resistantmicrobesexhibitedclearsuccessionpatterns,coincidingwithchangesinwaterchemistry(Desoeuvreetal.,2016).Nevertheless,thesuccessionpatternsofmicrobialinteractionsandassemblymechanismsinAMDloticsystemsremainuncertain.
Inthisstudy,weaimtoinvestigatehowmicrobialcommunitycompositions,networks,andassemblymechanismsinthewaterandsedimenthabitatchangedcoincidingwith
physiochemicalgradientsalonganAMD-impactedriver,revealingmicrobialresponsepatterntoenvironmentalstress.Weproposethreehypothesestotest:(i)themicrobialcommunitiesshiftfromacidophile-dominatedtofreshwatertaxa-dominatedwiththeincreaseinpH;(ii)themicrobialdiversityandnetworkcomplexityincreasedownstream;(iii)deterministicprocessesmainlygovernthemicrobialcommunitiesinacidicheadwaters,whilestochasticprocesseshavemoreinfluencedownstreaminneutralenvironments.Ourresearchrevealsclearsuccessionpatternsofmicrobialcommunitycompositions,functionsandassociationnetworksinbothwaterandsedimentalongtheAMDriver,andweidentifythebioticandabioticfactorsthatcontrolthemicrobialcommunitystructure.
Materialandmethods
Studysiteandsamplecollection
TheriverwestudiediscalledHouziriverinShaanxiProvince,China.TheriverisatributaryinHanrivercatchment,withatotallengthof27kmandacatchmentareaof133km2.Thisareahasacontinentalmonsoonclimate,withanannualaveragetemperatureof15.1oCandanannualprecipitationof787.4mm.TheriversourcewasheavilypollutedbyAMDwithapHofapproximately2.49.Wecollectedwaterandsedimentsamplesfrom5sitesalongadistanceof0.5–26kmfromthesourceoftheriver,whichweredesignatedasSiteA,B,C,D,andE(Fig.S1).ThepHvaluesatthesefivesitesrangedfrom2.49to6.35(TableS1&S2).Ateachsite,werandomlycollectedfivereplicateswithinadistanceof10meters.Forsedimentsamples,wecollectedapproximately250gramsandstoredtheminsterilecentrifugetubes.Forwatersamples,wecollected0.5litersofwaterandstoredtheminsterileplasticbottles.Sampleswere
immediatelyplacedontoiceandtransportedtothelaboratorywithin48hours.Subsequently,samplesweredividedintotwosubsamples:onewasstoredat4℃forphysiochemicalanalyses,theotherwasstoredat-80℃formicrobialanalyses.Microbialmaterialsinwatersampleswerecollectedusing0.22μmporesizemembranefilterspriortofreezing.OurcollectionofsamplestookplaceinMarch2021.
Environmentalvariableanalyses
Sedimentsampleswereairdried,fullygrounded,andsievedthrougha20-mmmeshbeforeconductingphysicochemicalanalysis.ThepHvaluesandelectricalconductivity(EC)weremeasuredina1:2.5(w/v)aqueoussolutionusingapHmeter(PB-10,Sartorious,Göttingen,Germany)andanECmeter(DDSJ-308F,RexElectricChemical,Shanghai,China),respectively.Netacidgenerationcapacity(NAG)andNAG-pHweremeasuredaspreviouslydescribed(Shuetal.,2001).Sulfatewasmeasuredina1:5(w/v)aqueoussolutionusingtheturbidimetricmethod,whiletotalsulfur(S)wasmeasuredafterHNO3-HClO4digestionusingthesamemethod.Totalorganiccarbon(TOC)wasmeasuredusinganultravioletspectrophotometer(UV2800S,SunnyHengping,Shanghai,China)afterK2Cr2O7-H2SO4digestion.Totalnitrogen(N)andtotalphosphorus(P)weremeasuredusingtheNessler'sreagentspectrophotometrymethodandmolybdenumbluemethod,respectively,afterH2SO4-HClO4digestion.Ferrous(Fe(III))andferricirons(Fe(II))weremeasuredusingthe1,10-phenanthrolinemethodafterextractionin0.5MHCl.Theconcentrationsoftotalheavymetalsofcopper(Cu),manganese(Mn)andzinc(Zn)weremeasuredusinganatomicabsorptionspectrophotometer(AA-7000,Shimadzu,Kyoto,Japan)afterHCl-HNO3-HClO4digestion.Theconcentrationsofavailableheavymetals(Cu,Mn,
Zn)wereextractedusingdiethylenetriaminepentaaceticacid(DTPA)andalsomeasuredbytheAA-7000equipment.
Watersampleswerefilteredthroughtwolayersofquantitativefilterpaper(poresizeof30-50μm)beforeconductingphysicochemicalanalysis.ThepHvaluewasmeasuredusingthepHmeter.Sulfatewasmeasuredusingtheturbidimetricmethod.TOCwasmeasuredusingaTOC-VCPHTotalOrganicCarbonAnalyzer(Shimadzu,Kyoto,Japan).Ferrousandferricironsweremeasuredusingthecolorimetricmethod.Heavymetals(Cu,Mn,Zn)weredeterminedusingtheAA-7000AtomicAbsorptionSpectrophotometer.Sincethewaterwashighlyhomogenousateachsite,theenvironmentalvariableswereonlymeasuredinonesample.
DNAextraction,PCRamplification,sequencinganddataprocessing
ThegenomicDNAwasextractedusingaFastDNASpinkit(MPBiomedicals,CA,USA)accordingtothemanufacturer'sinstructions.ThequalityoftheextractedDNAwasassessedusingaNanoDropSpectrophotometer(ThermoFisherScientific,MA,USA).TheV4regionofthe16SrRNAgenewasamplifiedusingprokaryoticuniversalprimers515F(GTGYCAGCMGCCGCGGTAA)and806R(GGACTACNVGGGTWTCTAAT).Triplicate
PCRamplificationswereperformedforeachsampleandthenpooled.ThePCRproductswerepurifiedusinganE.Z.N.A.GelExtractionKit(Omega,CT,USA),andthensequencedonanIlluminaNova6000PE250platform(Illumina,CA,USA).
Therawpaired-endsequenceswereanalyzedusingtheQIIME2platform(Bolyenetal.,2019).ThesequencesweredenoisedandassembledusingtheDADA2pluginandclusteredasampliconsequencevariants(ASVs)ata100%identitythreshold(Callahanetal.,2016).The
taxonomicannotationof16SrRNArepresentativesequenceswasperformedusingtheNaiveBayesclassifiertrainedfortheV4regionof16SrRNAgene(versionSilva-138-99-515-806).Sequencesannotatedaschloroplastsormitochondria,aswellasthosethatcouldnotbeannotatedatthephylumlevel,wereremoved.ASVswithatleast97%similaritycomparedwiththesequencesinFreshwaterTrainingSet(FreshTrain)weredefinedasfreshwatertaxa(Rohweretal.,2018).Tominimizebiasesresultingfromdifferencesinsequencingdepthamongthesamples,ASVswererandomlyresampledtoadepthof26,245forallsamples(Fig.S2).ThefunctionalprofileswerepredictedusingPICRUSt2(Douglasetal.,2020).
Networkconstructionandanalyses
Themolecularecologicalnetworkswereconstructedaccordingtoapreviouslydescribedmethod(CsardiandNepusz,2006).Inbrief,theASVsthatpresentedinmorethan80%ofthesamplesateachsitewereselectedfornetworkconstruction.TheabundanceofeachASVwaslog-transformedbeforecalculatinganassociationmatrixwithPearson'scorrelationsusingtheHmiscpackage.Thenetworksweregeneratedbasedonrobustlinkswith|R|>0.80andstatisticalsignificancep<0.01usingtheigraphpackage.Sub-networksforeachsamplewerethenextracted.Thedivisionofthenetworksintodifferentmoduleswasaccomplishedusingthefastgreedyalgorithm.Networktopologicalproperties,includingaveragedegree,averageclusteringcoefficient,connectanceandmodularity,werecalculatedviaigraphpackage.Sincethesizeandconnectivityofnetworksvariedsubstantiallyamongdifferentnetworks(TableS3),relativemodularity,representinghowmodularisintheobservednetworkascomparedwiththeexpectedmodularityfromtherandomnetworks,wascalculatedaspreviouslydescribed
(ThebaultandFontaine,2010):
Relativemodularity=𝑀−̅𝑀̅̅𝑟̅
̅𝑀̅̅𝑟̅
whereMisthemodularityoftheobservednetwork,and
̅𝑀̅̅𝑟̅isthemeanofthemodularityfrom
100randomnetworks.
Cohesion,anabundance-weightedmetricbasedonpairwisecorrelations,wascalculatedto
quantifythenegativeandpositiveconnectivityofmicrobialcommunitiesaspreviouslydescribed(HerrenandMcMahon,2017):
𝑚
cohesion=∑abundance𝑖×connectedness𝑖
𝑖=1
wheremisthetotalnumberoftaxainanetworkcommunity.Foreachtaxon,thepositiveandnegativecorrelationswereseparatelyaveragedastheconnectednessvalues.Cohesionvalueswerecalculatedbymultiplyingtherelativeabundancetablebytheconnectednessvaluesaccordingtotheprecedingformulaforeachsample.
Thetopologicalroleofeachnodewasdeterminedusingwithin-moduleconnectivity(Zi)andamong-moduleconnectivity(Pi),classifyingthemasnetworkhubs(Zi>2.5andPi>0.62),modulehubs(Zi>2.5andPi≤0.62),connectors(Zi≤2.5andPi>0.62),orperipherals(Zi≤2.5andPi≤0.62)(Dengetal.,2012).ThenetworkwasvisualizedusingGephi0.9.
Statisticalanalyses
AllstatisticalanalyseswereconductedinRenvironmentversion4.0.5().ShannonindexandFaith’sphylogeneticdiversitywerecalculatedusingtheveganandpicantepackage,respectively.ThevariationsoffactorsacrosssamplingsiteswereexaminedusingthenonparametricKruskal-WallistestandDunn’sposthoctestatsignificantlevelof0.05usingthe
FSApackage.Thevariationsofmicrobialcommunitycompositionsacrosssamplingsiteswereevaluatedusingpermutationalmultivariateanalysisofvariance(PERMANOVA)basedonBray-Curtisdissimilaritymetrics,andvisualizedusingprincipalcoordinateanalysis(PCoA)usingtheveganpackage.Thesignificanceofthedistance-decayrelationshipbetweenthemicrobialcommunitysimilarityandriverdistancewasassessedusingManteltest.Community-levelprokaryoticribosomalRNAgeneoperon(rrn)copynumberswerecalculatedaspreviouslydescribed(Daietal.,2022).TheabundantASVs(relativeabundance>1%atanyofthesamplingsites)thatshowclearsuccessionpatternswereexaminedbyANOVAanddisplayedintheheatmapusingthepheatmappackage.
Regressionsbetweenvariablesandriverdistance.Toexaminethesuccessionpatternofphysicochemicalandmicrobialcommunityvariablesalongtheriver,regressionswereperformedagainstriverdistancefromeachsamplingsitetotheAMD-pollutedriversource.Forwatercontaminants,theexponentialdecayfunctionwasusedtodelineatethevariationsinnaturalattenuationprocessesaspreviouslydescribed(Acunaetal.,2015).However,therearenotheoreticallyestablishedmodelforothervariables,suchasthecontaminantsinsedimentormicrobialattributes.Therefore,bothlinearandnon-linearregressions(includingexponential,exponentialdecay,andlogarithmicmodels)wereperformedusingtheBasicTrendLinepackage.ThemodelwiththelowestAICvalueandresidualstandarderrorwasselectedforvisualization(DataS1).
Assemblymechanismanalyses.Toevaluatetherelativeimportanceofstochasticanddeterministicprocessesunderlyingmicrobialcommunityassembly,thephylogeneticandtaxonomicstochasticityratiowereestimatedusingamodifiedmethodbasedonnull-model
algorithms with abundance-weighted beta-mean-nearest-taxon-distance (βMNTD) andBray-CurtisdissimilaritymetricsviatheNSTpackage.NichebreadthindexofmicrobialcommunitywascalculatedusingthestandardizedLevin’sindexasimplementedinthespaapackage.Therelativecontributionsofdeterministicprocesses,includingabioticselection(physicochemicalfactors),bioticselection(networktopologicalfactors)andriverdistance,instructuringprokaryoticcommunitieswereassessedusingmultipleregressiononmatrices(MRM)approachusingtheecodistpackage.Riverdistancewasln-transformed.ThedissimilaritymatricesofabioticandbioticfactorswerecalculatedusingtheEuclideanmethod.Toreducetheinfluenceofcollinearity,thefactorswithhighcovariation(Spearman’sρ2>0.8)wereexcludedbeforeconductingtheMRMmodelusingthevarclusfunctionintheHmiscpackage.Tofurtherexploretherelativecontributionsofeachabioticandbioticfactor,anothertwoMRMmodelswereperformed.TheMRMmodelwasinitiallyruntoeliminatethenonsiginificantfactors,therebypreventingtheeffectfromspuriousrelationshipsbetweenfactors.ThefinalMRMmodelforeachfactorwasobtainedbyrunningitasecondtimewiththeremainingvariables.Therelativeimportanceofdifferentcommunityassemblyprocesses,includingheterogeneousselection,homogeneousselection,dispersallimitation,homogenizingdispersal,anddrift,wasquantitativelyinferredbyphylogeneticbin-basednullmodelanalysisusingtheiCAMPpackage.
Results
Environmentalvariables
ThepHvaluesofwaterexhibitedalinearincreasewithriverdistance(Fig.1a),rangingfrom
2.49atSiteAto6.35atSiteE(TableS1).Thesulfateconcentrationdisplayedadecrease
followinganexponentialdecaymodel(Fig.1b),decliningfrom3.188g/Lto0.357g/L(TableS1).Theconcentrationsofseveralmetals,includingFe(III),Cu,Mn,andZn,alsoshowedexponentialdecreaseswithriverdistance(Fig.1d–1g),whereastheconcentrationsofFe(II)decreasedlogarithmically(Fig.1c).Dissolvedoxygenconcentrationsandtotalorganiccarbondidnotdisplayanyclearpatternsofvariation(Fig.S3a&S3b).
Inthesediment,thepHvaluesincreasedlinearlyfrom2.65atSiteAto6.11atSiteE(Fig.1h&TableS2),followingapatternobservedinthewaterhabitat,whiletheNAG-pHvaluesdisplayedalogarithmicincreasewithdistanceupstream(Fig.1i).Thecontentsofsalt,totalsulfur,sulfate,Fe(II),andFe(III)allexhibiteddecreasesalongtheriver(Fig.1j–1n).Ontheotherhand,thecontentsoftotalorganiccarbonincreasedlinearlyalongtheriver(Fig.1o),whilethoseoftotalnitrogendecreasedlogarithmically(Fig.1p).However,thecontentsoftotalphosphoruswererelativelystable,expectforahighvalueatSiteB(TableS2&Fig.S3c).Incontrasttothedecreaseofheavymetalsinthewaterhabitat,thetotalcontentsofMnandZn,aswellasDTPA-extractableMn,Cu,andZn,increasedwithriverdistance(Fig.1q–1u),indicatingtheaccumulationofheavymetalsinthesediment.However,thetotalcontentsofCuremainedrelativelystable(Fig.S3d).
3.2Microbialcommunitydiversityandcomposition
Atotalof1,312,250high-qualitysequenceswereobtainedforallsamples,whichwereclusteredinto117to1,062ampliconsequencevariants(ASVs)inthewater,and205to1,744ASVsinthesediment(Fig.S2).Astheriverfloweddownstream,thealphadiversity(Shannonindex)increasedlinearlyfrom2.459to5.131inthewaterandincreasedlogarithmicallyfrom3.599to
5.726inthesediment(Fig.2a–2c).Similarly,Faith'sphylogeneticdiversityincreasedlogarithmicallyfrom13.66to60.61inthewaterandfrom21.37to65.19inthesediment(Fig.2d–2f).
Microbialcommunitycompositionsatdifferentsitesvaried(PERMANOVAp<0.001,Fig.3a)anddifferedwitheachother(p<0.011,TableS4).Onlyasmallproportion(0.36%–1.16%)ofASVsweresharedbyallthesamplingsites(Fig.S4).ThemicrobialcommunitycompositionsatSiteAwereordinatedclosetoSiteBinboththewaterandsedimenthabitats(Fig.3a),suggestingthatmicrobialcommunitycompositionswerestronglyaffectedbyAMDintheheadwaters.MicrobialcommunitycompositionsatSiteC,DandEwereseparatedfromthoseatSiteAandB,reflectingasuccessionofmicrobialcommunitycompositionsalongtheriver.Significantdistance-decayrelationshipswereobservedformicrobialcommunitiesinboththewaterandsedimenthabitats(Water:slope=-0.133,p<0.001;Sediment:slope=-0.135,p<0.001,Fig.3b).Furthermore,thecommunity-levelrrncopynumberofmicrobialcommunitiesincreasedlogarithmicallyalongtheriver(Fig.3c),indicatingasuccessionofmicrobiallifetraits.Therelativeabundancesoffreshwatertaxaincreasedlinearlywithriverdistanceinboththewaterandsedimenthabitats(Fig.3d).
UponfurtherexaminationofmicrobialcommunitycompositionsattheASVlevel,theabundantASVswereseparatedintotwogroups:GroupIweretheASVsthatenrichedatSiteAandBwhileGroupIIwerethoseenrichedatSiteC,DandE(Fig.4).ThisresultwasconsistentwiththatinPCoAanalysis,suggestingaclearsuccessionpatternalongtheriverinboththewaterandsedimenthabitats.Inthewaterhabitat,ASVsofFerrovum,Gallionella,groupSva0485,andAcidiphilium,whichareaffiliatedwithinProteobacteria,aswellasASVofLeptospirilium,
affiliatedwithinNitrospirota,thrivedatheadwaters(SiteAandB)(Fig.4a).ASVsofAcidocella,Pseudarcobacter,Rhodanobcter,Acinetobacter,Acidithrix,Nitrosotalea,andThiomonas,thrivedatSiteCinalessacidicenvironment,whileASVsofNovosphingobium,Flavobacterium,Pseudanabaena,Polaromonas,Prevotella,Rhodoferax,Bacteroides,Methylotenera,andBdellovibrioproliferatedatSiteDandE(Fig.4a).Consistently,therelativeabundancesofProteobacteriaandNitrospirotadecreaseddownstream,whilethoseofBacteroidota,Campilobacterota,Cyanobacteria,andBdellovibrionotaincreased(Fig.S5a).
Inthesedimenthabitat,taxaannotatedasLeptospirillum,Acidiphilium,Metallibacterium,Ferrovum,Thermoplasmataceae,AD3,Aquisphaera,CPla−3_termite_group,andPseudomonasthrivedatSiteAandB(Fig.4b),resultinginhighrelativeabundancesofProteobacteria,Nitrospirota,Thermoplasmatota,andPlanctomycetota(Fig.S5b).ASVsofAcidocella,Granulicella,RhodanobacterandgroupWPS-2thrivedatSiteC,whileASVsofRhodoferax,Polaromonas,Alkanindiges,Novosphingobium,Massilia,Pseudanabaena,Sediminibacterium,Arenimonas,Flavobacterium,Methylotenera,andenv.OPS_17thrivedatSiteDandE(Fig.4b).
Sulfatereducingbacteria(SRB)areknowntobeeffectiveintreatingAMDwastewater;however,theSRBtaxaconsideredcompetentwerenotamongtheabundanttaxaatanyofthesites(Fig.4).FurtherinvestigationrevealedthattherelativeabundanceofSRBwasextremelylowinboththewaterandsedimenthabitatsatSiteAandB(0–0.007%,Fig.S6a,S6b).Downstreamsitesshowedincreasedrelativeabundancesrangingfrom0.070%to0.242%,withdominanttaxasuchasDesulfobulbus,Desulfomicrobium,Desulforegula,Desulfovibrio,andDesulfurivibrio.Similarly,dissimilatorysulfatereductionalsoexhibitedlowrelativeabundances(0–0.004‰,Fig.S6c),particularlyatSiteAandB,asindicatedbythefunctionalprofileofdsrA
anddsrBpredictedbyPICRUSt2.Conversely,assimilatorysulfatereduction(cysIJandsir)displayedhigherrelativeabundancesrangingfrom0.064%to0.098%acrossthefivesites(Fig.6d).
Microbialnetworks
Aswaterfloweddownstreamalongtheriver,thenumberofnodesandedgesinthenetworksincreasedsubstantiallyinboththewaterandsedimenthabitats(Fig.5a).Specifically,inthewaterhabitat,thenumberofnodeswasincreasedfrom57atSiteAto598atSiteE,whilethenumberoflinkswasincreasedfrom51to2,213(Fig.4a).Similarly,inthesedimenthabitat,thenumberofnodeswasincreasedfrom108to573,andthenumberoflinkswasincreasedfrom276to3,668.Thepositiverelationshipbetweennetworkcomplexityandriverdistancewasevident,asindicatedbythesignificant(p<0.001)regressionsofseveralnetworktopologicalparameters,includingnetworksize(totalnumberofnodes,n),connectivity(totalnumberoflinks,L),andaverageconnectivity(averagelinkspernode,averageK)(Fig.5b–5d).PositivelinksdominatedamongallofthelinksinthenetworksofSiteAandB(64.5%–90.9%,TableS3).Inaddition,cohesion,arecentlydevelopedmetric,wasquantifiedtoestimatethedegreeofcommunitycomplexity.Negativecohesionincreasedsignificantlyoverdistance(p<0.001,Fig.5e),suggestingthatnegativeassociationswereenhancedalongtheriver.Asfornetworkorganizationalstructure,relativemodularityincreasedsignificantlyoverdistance(Fig.5f),indicatingthatmicrobialnetworksshiftedtohigh-modularstructureindownstream.
Topologicalroleofeachindividualnodewasinferredonthebasisoftheirwithin-moduleconnectivity(Zi)andamong-moduleconnectivity(Pi).Atotalof6modulehubsand33
connectorsacrossallthenetworkswereidentified(Fig.S7),allofwhichcouldbeconsideredaskeystonenodes.Thenumberofkeystonenodesincreasedoverriverdistance(Fig.5g).Keystonenodesinupstreamsiteswereassociatedwithiron/sulfurcycling,whilethoseindownstreamsiteswereassociatedwithnitrification,nitratereduction,andorganicmatterdegradation(DataS2).
Microbialcommunityassemblyprocesses
Theestimatedphylogeneticandtaxonomicstochasticityratioswereincreasedoverriverdistanceinboththewaterandsedimenthabitats(Fig.6a,6b).Specifically,theestimatedstochasticityratiosatSiteAandBwereintherangeof0.032–0.444,lowerthan0.50,indicatingstrongselectionforcesduetoheavycontami
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家私行业美工设计心得
- 五年级班主任的成长与总结
- 教研工作推动学术创新
- 家具行业设计创新培训分享
- 酒店仓储管理总结
- 创新产品推广总结
- 《气防知识学习资料》课件
- 《黄培志危重医学》课件
- 《姬花市场推广》课件
- 2022年云南省普洱市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 紫砂壶介绍课件
- 2023年度学校食堂食品从业人员考核试题(附答案)
- 伊朗政府与政治课件
- 上交所金桥数据中心用户手册
- 互联网金融(同济大学)智慧树知到期末考试答案章节答案2024年同济大学
- 近年无发生的诉讼和仲裁情况承诺书
- 2023-2024学年高考英语真题复习-定语从句(附解析)
- 人教版四年级数学上册数与代数专项复习卷(含答案)
- 2022年人教版六年级科学(上册)期末题及答案
- 辽师软件工程期末复习题
- 主题英语智慧树知到期末考试答案2024年
评论
0/150
提交评论