2022年北京门头沟区雁翅中学高一数学文测试题含解析_第1页
2022年北京门头沟区雁翅中学高一数学文测试题含解析_第2页
2022年北京门头沟区雁翅中学高一数学文测试题含解析_第3页
2022年北京门头沟区雁翅中学高一数学文测试题含解析_第4页
2022年北京门头沟区雁翅中学高一数学文测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年北京门头沟区雁翅中学高一数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.△ABC的内角A、B、C的对边分别为a、b、c,若△ABC的面积为,则C=A. B. C. D.参考答案:C分析:利用面积公式和余弦定理进行计算可得。详解:由题可知所以由余弦定理所以故选C.点睛:本题主要考查解三角形,考查了三角形的面积公式和余弦定理。2.下列函数中,是奇函数且在区间(﹣1,0)内单调递减的函数是()A.y=2﹣x B.y=x﹣ C.y=﹣ D.y=﹣tanx参考答案:D【考点】奇偶性与单调性的综合.【分析】由奇函数的图象关于原点对称便可判断出A错误,可判断y=x和y=﹣在(﹣1,0)内单调递增便可判断B错误,而根据y=﹣为偶函数即可判断出C错误,根据y=﹣tanx的图象便可判断出D正确.【解答】解:A.根据y=2﹣x的图象知该函数不是奇函数,∴该选项错误;B.y=x和y=﹣在(﹣1,0)内都单调递增,∴y=x﹣在(﹣1,0)内单调递增,∴该选项错误;C.y=﹣为偶函数,∴该选项错误;D.由y=﹣tanx的图象知该函数在(﹣1,0)内单调递减,∴该选项正确.故选D.3.在等差数列{an}中,已知a4+a8=16,则该数列前11项和S11等于A.58 B.88 C.143

D.176参考答案:B4.已知数列{an}的前n项和,那么下述结论正确的是(

A.k为任意实数时,{an}是等比数列

B.k=-3时,{an}是等比数列

C.k=-1时,{an}是等比数列

D.{an}不可能等比数列参考答案:B略5.已知是两个不共线的向量,它们的起点相同,且三个向量的终点在同一直线上,则的值是A、

B、

C、2

D、参考答案:A6.为比较甲,乙两地某月14时的气温,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为()A.①③ B.①④ C.②③ D.②④参考答案:B【考点】命题的真假判断与应用.【分析】由已知的茎叶图,我们易分析出甲、乙甲,乙两地某月14时的气温抽取的样本温度,进而求出两组数据的平均数、及方差可得答案【解答】解:由茎叶图中的数据,我们可得甲、乙甲,乙两地某月14时的气温抽取的样本温度分别为:甲:26,28,29,31,31乙:28,29,30,31,32;可得:甲地该月14时的平均气温:(26+28+29+31+31)=29,乙地该月14时的平均气温:(28+29+30+31+32)=30,故甲地该月14时的平均气温低于乙地该月14时的平均气温;甲地该月14时温度的方差为:==3.6乙地该月14时温度的方差为:==2,故>,所以甲地该月14时的气温的标准差大于乙地该月14时的气温标准差.故选:B.7.在△ABC中,角A、B、C所对的边分别为a、b、c,且若,则△ABC的形状是(

)A.等腰三角形 B.直角三角形C.等边三角形 D.等腰直角三角参考答案:C【分析】直接利用余弦定理的应用求出A的值,进一步利用正弦定理得到:b=c,最后判断出三角形的形状.【详解】在△ABC中,角A、B、C所对的边分别为a、b、c,且b2+c2=a2+bc.则:,由于:0<A<π,故:A.由于:sinBsinC=sin2A,利用正弦定理得:bc=a2,所以:b2+c2﹣2bc=0,故:b=c,所以:△ABC为等边三角形.故选:C.【点睛】本题考查了正弦定理和余弦定理及三角形面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.8.如图,在△ABC中,点O是BC的中点.过点O的直线分别交直线AB,AC于不同的两点M,N,若=m,=n,则m+n的值为()A.1 B.2 C.﹣2 D.参考答案:B【考点】平面向量的基本定理及其意义.【分析】根据平面内三点共线的充要条件进行判断,即若A,B,C三点共线,则.【解答】解:由已知得,结合=m,=n,所以.又因为O,M,N三点共线,所以,所以m+n=2.故选B9.设定义在上的函数对任意实数满足,且,则的值为

)A.-2

B.

C.0

D.4参考答案:B略10.函数的图像关于(

)A.轴对称

B.直线对称

C.坐标原点对称

D.直线对称参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.已知f(x)=,则f(f(8))=.参考答案:log23【考点】函数的值.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】直接利用函数的解析式,逐步求解函数值即可.【解答】解:f(x)=,则f(f(8))=f(log28)=f(3)=log23.故答案为:log23.【点评】本题考查函数值的求法,分段函数的应用,考查计算能力.12.已知向量,,若,则的值

。参考答案:13.已知为上的奇函数,时,则=

参考答案:-214.如图,货轮在海上以20nmile/h的速度沿着方位角(从指北方向顺时针转到目标方向线的水平角)为150°的方向航行.为了确定船位,在点B观察灯塔A的方位角是120°,航行半小时后到达C点,观察灯塔A的方位角是75°,则货轮到达C点时与灯塔A的距离为______nmile参考答案:【分析】通过方位角定义,求出,,利用正弦定理即可得到答案.【详解】根据题意,可知,,,因此可得,由正弦定理得:,求得,即答案为.【点睛】本题主要考查正弦定理的实际应用,难度不大.15.设a=,b=,c=cos81°+sin99°,将a,b,c用“<”号连接起来.参考答案:b<c<a【考点】三角函数的化简求值.【分析】利用二倍角公式化简a,b,再由两角和的正弦化简c,然后结合正弦函数的单调性得答案.【解答】解:∵a==sin140°=sin40°,b===sin35.5°,c=cos81°+sin99°==sin39°,且y=sinx在[0°,90°]内为增函数,∴b<c<a.故答案为:b<c<a.16.已知过原点的直线与圆C:相切,则该直线的方程为

参考答案:17.已知集合等于

。参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数。(1)当时,求该函数的值域;(2)令,求在上的最值。参考答案:(1),令,此时有,。(2),令,此时有,ⅰ>当时,;;ⅱ>当时,;;ⅲ>当时,;;ⅳ>当时,;;

19.计算(本题10分);

参考答案:20.如图(1)所示,已知四边形SBCD是由直角△SAB和直角梯形ABCD拼接而成的,其中∠SAB=∠SDC=90°,且点A为线段SD的中点,AD=2DC=1,AB=SD,现将△SAB沿AB进行翻折,使得二面角S﹣AB﹣C的大小为90°,得到的图形如图(2)所示,连接SC,点E、F分别在线段SB、SC上.(Ⅰ)证明:BD⊥AF;(Ⅱ)若三棱锥B﹣AEC的体积是四棱锥S﹣ABCD体积的,求点E到平面ABCD的距离.参考答案:【分析】(Ⅰ)推导出SA⊥AD,SA⊥AB,从而SA⊥平面ABCD,进而SA⊥BD,再求出AC⊥BD,由此得到BD⊥平面SAC,从而能证明BD⊥AF.(Ⅱ)设点E到平面ABCD的距离为h,由VB﹣AEC=VE﹣ABC,且=,能求出点E到平面ABCD的距离.【解答】证明:(Ⅰ)∵四边形SBCD是由直角△SAB和直角梯形ABCD拼接而成的,其中∠SAB=∠SDC=90°,二面角S﹣AB﹣C的大小为90°,∴SA⊥AD,又SA⊥AB,AB∩AD=A,∴SA⊥平面ABCD,又BD?平面ABCD,∴SA⊥BD,在直角梯形ABCD中,∠BAD=∠ADC=90°,AD=2CD=1,AB=2,∴tan∠ABD=tan∠CAD=,又∠DAC+∠BAC=90°,∴∠ABD+∠BAC=90°,即AC⊥BD,又AC∩SA=A,∴BD⊥平面SAC,∵AF?平面SAC,∴BD⊥AF.解:(Ⅱ)设点E到平面ABCD的距离为h,∵VB﹣AEC=VE﹣ABC,且=,∴===,解得h=,∴点E到平面ABCD的距离为.21.是否存在实数a,使函数为奇函数,同时使函数为偶函数,证明你的结论。参考答案:解析:为奇函数,所以f(0)=0,得。

若g(x)为偶函数,则h(x)=为奇函数,

h(-x)+h(x)=0

∴存在符合题设条件的a=。22.如图,正方形ABCD的边长为1,P,Q分别为AB,DA上动点,且△APQ的周长为2,设AP=x,AQ=y.(1)求x,y之间的函数关系式y=f(x);(2)判断∠PCQ的大小是否为定值?并说明理由;(3)设△PCQ的面积分别为S,求S的最小值.参考答案:【考点】基本不等式在最值问题中的应用;函数解析式的求解及常用方法.【专题】综合题;方程思想;综合法;函数的性质及应用;不等式.【分析】(1)由已知可得PQ=2﹣x﹣y,根据勾股定理有(2﹣x﹣y)2=x2+y2,即可求x,y之间的函数关系式y=f(x);(2)求得∴∠DCQ+∠BCP=,即可判断∠PCQ的大小;(3)表示△PCQ的面积,利用基本不等式求S的最小值.【解答】解:(1)由已知可得PQ=2﹣x﹣y,根据勾股定理有(2﹣x﹣y)2=x2+y2,…化简得:y=(0<x<1)…(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论