SPSS软件学习心得_第1页
SPSS软件学习心得_第2页
SPSS软件学习心得_第3页
SPSS软件学习心得_第4页
SPSS软件学习心得_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

SPSS软件学习心得————————————————————————————————作者:————————————————————————————————日期: 误差理论数据处理分析常见的统计软件有SAS,SPSS,MINITAB,EXCEL等。这些统计软件的功能大同小异,各有所侧重。其中的SAS和SPSS是目前在大型企业,各类院校及科研机构中较为流行的两种统计软件。特别是SPSS,其界面友好,功能强大,易学,易用,包含了几乎全部尖端的统计方法,具备完善的数据定义,操作管理和开放的数据接口以及灵活美观的统计图表制作。作为专业的统计软件,SPSS感觉比EXCEL更丰富,也更准确。以下是我运用一组数据,然后运用SPSS软件分析后的图表描述统计量N全距极小值极大值均值标准差方差统计量统计量统计量统计量统计量标准误统计量统计量抗拉强度y1612.4767.8980.3673.0525.869483.4779312.096屈服强度x1610.1647.1457.3050.6237.717052.868218.227有效的N(列表状态)16表1从表1中分析,抗拉强度的极小值为67.89,极大值为80.36,均值标准误差为0.86948,标准差为3,47793,方差为12.096。屈服强度的极小值为47.14,极大值为57.30,均值标准误差为0.71705,标准差为2.86821,方差为8.227。Anovab模型平方和df均方FSig.1回归176.4691176.469497.056.000a残差4.97014.355总计181.44015a.预测变量:(常量),屈服强度x。b.因变量:抗拉强度y表2从表2中分析,回归平方和为176.469,自由度为1,均值方差,176.469,显著性为497.056,残差平方和为4.970,自由度为14,均值方差为0.355。系数a模型非标准化系数标准系数tSig.B标准误差试用版1(常量)12.5142.7194.602.000屈服强度x1.196.054.98622.295.000a.因变量:抗拉强度y表3从表3从分析,常数量B为12.514,非标准化系数的标准误差为2.719,T值为4.602。标准系数使用版为0.986,T值为22.自变量的B值为1.196,非标准化系数的标准误差为0.054,295。残差统计量a极小值极大值均值标准偏差N预测值68.886581.036373.05253.4299616残差-.996451.00316.00000.5756416标准预测值-1.2152.328.0001.00016标准残差-1.6721.684.000.96616a.因变量:抗拉强度y表4图1图2从散点图可以看出,抗拉强度Y与屈服强度X大致呈线性关系。人们假设Y与X之间的内在关系是一条直线,这些点与直线的偏离是实验过程中其他一些随机因素的影响而引起的。心得体会在学习SPSS中必须学会的是“数据组织方式和数据测度”,这个对于那些学习信息的人容易理解,对文科出身的人不容易理解。但是这个问题对于初学者很重要。在实际使用SPSS时,就得按部就班地按照先定义变量,测调度,在录入(导入数据),再分析。分析并不是整个流程。在大二快结束的学习过程中参加了SPSS的课程学习,尽管我只是大略地学习,泛泛地接触这门课程,但是对这门课的兴趣很浓。参与这次实践的经历深刻改变了我对这门课的认识。我越发感到我需要这门课程,我必须掌握这门统计技术,分析方法。这就是社会的需求,学校的标准,也是个人发展得需要。虽然只有几周的学习时间,但我已经对该课程有了更多的了解,十分感谢黄璟老师讲解的这门课,提供了这个平台。理论加实践,为不同基础的学生提供了好的学习环境。我认为开设很有必要,应当成为重点。现实生活中的数据多不胜数,但要得到有用的数据并不容易,这就要应用数据分析的方法确定数据的属性,再用清理工具(清洗、集成、转换、消减)进行筛选转化为有用的信息,再用SPSS深入分析,得出规律。对数据的分析是以统计学为基础的,统计学提供了一套完整的科学方法论,统计软件则是实现的手段,统计分析软件具有很多有点。它功能全面,系统地集成了多种成熟的统计分析方法;有完善的数据定义、操作和管理功能;方便地生成各种统计图形和统计表格;使用方式简单,有完备的联机帮助功能;软件开放性好,能方便地和其他软件进行数据交换。我们接触最多的统计软件是EXCEL和SPSS。在统计学中应用EXCEL,在数据分析中则主要是SPSS,它具有很好的人机界面和完善的输出结果。这门课程中我们学了另外一种数据分析方法就是聚类分析。它与“物以类聚,人以群分”是同样的道理。多元统计分析方法就是对样品或指标进行量化分类的问题,它们讨论的对象是大量的样品,要求能合理地按各自的特性也就是相似性来进行合理的分类,没有任何模式可供参考或依循,即是在没有先验知识的情况下进行的。我们学习了Q型聚类法、R型聚类法以及系统聚类法。Q型聚类分析样品间的聚类,用距离来测度亲疏程度。R型聚类分析变量间的聚类,用相似系数来测度亲疏程度。常用的Q聚类法有闵氏距离和马氏距离,只是我们必须掌握的。具体的计算方法有最短距离法、最长距离法、重心法、离差平方和连接法等等。在最后一节课老师讲了贝叶斯理论,根据先验概率和实验事件得出后验概率,从而得出更为可信的概率。最后,这门课程就学完了,学到了很,还有很多不懂。本课程需要很好的统计和概率论的基础,要不,很难听懂或者简直听不懂。同时,老师很少强求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论