寻智六西格玛图解说明_第1页
寻智六西格玛图解说明_第2页
寻智六西格玛图解说明_第3页
寻智六西格玛图解说明_第4页
寻智六西格玛图解说明_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.請問何謂6σ?

所謂6σ确实是指在客戶的規格上下限之內應含蓋±6σ的變異。<版權所有.尋智專業顧問2.請問客戶為何愈來愈重視6σ?在大量生產的時代客戶都會越來越在意不良品所造成的潛在損失(停機、斷線,全檢等額外的成本),而這些損失都源自於產品超出規格的不良品。因此,客戶為了降低潛在的風險和損失,當然會回頭要求供應商降低變異換言之,供應商的變異愈小,不良品出現的機率就愈少,客戶的潛在風險也就愈低,這确实是客戶愈來愈重視6σ的全然缘故。<版權所有.尋智專業3.能否舉例說明6σ與個人有何關係?其實6σ並非工廠的事,你我每一個人都身受6σ的影響而不自知,就以等火車為例,為何大多數人都不排隊呢?因為火車實際的停車位置變異太大,因此就無法建立乘客排隊的信心。然而同一群人,換乘捷運時,為何又都排隊呢?因為捷運停靠月台的位置十分精確,因此大伙儿自然會排隊,由此可見,在每一個人的潛意識中,我們都期待一種變異更小(換言之更加穩定可靠)的生活型態。<版權所有.尋智專4.請問6σ與過去大伙儿熟知的品管觀念有何不同?過去的品管觀念比較重視Q(事後的管制),因此才衍生出管制圖與抽樣計劃等品管工具,然而6σ的方法則完全將焦點放在P(事前的生產系統)上,二者的差別可用圖示如下:

5.請問改善系統降低變異是不是有更具體的方向?其實總變異()只是一個綜合的結果,統計學家早已發現:換言之,有些變異來自於原料的變異(),而變異的另一部分則可能來自方法(),當然設備()也有可能造成一些變異。<版權所有.尋智專業6.照這樣看來,要做好6σ就不能只靠品管部門自已的努力囉?沒錯,6σ必須動員全公司的力量才可能成功。因此6σ等於是為眾所週知的TQM找到了一個更容易落實的平台,也提供了更客觀的評估指標。<版權所有.尋智專業顧問7.既然改善系統變異與方法(Me),設備(Eq),原料(Ma)等都有關係,然而為何推動6σ愈成功的公司總是先強調方法的改善?為了儘快看到成果,因此降低變異時最明智的作法是要由可掌控性高的部分下手,一般而言一個正在運轉的工廠其設備(Eq)的可掌控性(指立即更換或修改)最低。反之方法(Me泛指SOP)則幾乎完全操之在我,因此從方法下手降低變異,當然是明智的上策。<版權所有.尋智專8.若要從操作方法降低變異,請問該如何著手呢?俗話說『擒賊先擒王』要改善操作方法,一定先要找出對品質有最大影響(術語稱為貢獻率)的因子(術語稱為顯著因子),以下即為一張製程因子貢獻率帕拉圖:<版權所有.尋智專業9.請問如何得知每一個因子的貢獻率?所謂貢獻率(@%)确实是相關係數(r)的平方,統計學早已證實所有操作參數加上誤差項貢獻率的總和為100%這一部份的計算一般的ANOVA軟體均會提供,因此可為大伙儿省去许多時間,這也是為何6σ黑帶武士訓練會特別重視ANOVA的全然缘故。10.找出顯著因子之後,如何真正實現降低變異的理想呢?顯著因子被找出後,當然要進一步找出顯著因子與最終品質之間的因果關係。目前在統計軟體中除了可提供迴歸分析之外,反應曲面分析(RSM)也是一種日益普及的統計手法。11.照以上的分析,運用6σ在開發新的操作方法,以降低系統變異上大概己經有一套有效的作法可循,最後可否一併圖解一下?沒錯,KNOWHOW開發與降低系統變異的脈絡已日漸清晰,有心人可參考下圖:<版權所有.尋智專業顧問有限公司>1.正本清源在改善

回到6σ的原點,它既非教育訓練,亦非統計手法,推動6σ的全然理由是為促成持續不斷的改善。其實任何製程本來就有變異起伏的現象,以某種鍍膜厚度為例,其變異如下圖所示:

所謂6σ确实是希望算出此一鍍膜厚度的σ之後,將±6σ的總變異操纵在客戶期待的規格上下限之內。

這個目標真是知易行難,因為實際的製程能力可能並不足,以致變異遠在規格之外,其相對關係如下圖所示:面對上述這種情況,推動6σ的公司就可將鍍膜厚度列入改善專案,並指定盟主與黑帶武士來負責克服這個製程能力不足的問題。

2.循序漸進找真因當改善專案成立之後,黑帶武士的首要任務确实是儘快找出造成鍍膜厚度變異起伏的真因(rootcause)。從製程來看各種製程參數(如濃度、溫度PH值,時間等)當然都會造成變異,然而依據帕拉圖原則(80/20定律),每一個個別的製程參數(Pi)對最後的品質特性(Q,本例即為鍍膜厚度)的影響度是不可能完全相同的,俗話說:「擒賊先擒王」,因此改善活動的第一步确实是要先找出影響品質變異的真因(這确实是DOE中所稱的顯著因子),為了用事半功倍的方式找出真因,一般會先安排一個多因子少水準的實驗(註一),將所有可能的製程參數(Pi)一併納入一個L827或L16215的直交表中來進行實驗,然後將實驗數據運用變異數分析的統計理論(ANOVA),將其區分為特不顯著因子(有**符號者),顯著因子(有*符號者)及不顯著因子,且透過ANOVA還可一併算出各因子的貢獻率,試舉例說明如下:

3.針對真因調參數

針對上例,一方面可清晰說明為何ANOVA是黑帶武士所不可或缺的訓練課程之一,另一方面依據ANOVA的結果,鍍膜厚度改善專案的重心,能够進一步聚焦在5個製程參數上(即A,C,G,AC,I)因為這5個製程參數就決定了鍍膜厚度成敗的90%。

既然這5個的製程參數是決定鍍膜厚度的關鍵因素,改善專案的下一步确实是要針對這少數的顯著因子,找出最佳的製程操纵條件。一般而言,此時即可借助L934或L27313的直交配列表來進行第二階段的實驗,然後將實驗數據透過ANOVA,進一步找出各顯著因子的最佳操作條件,以便減少鍍膜厚度的變異,並進而將總變異操纵在客戶規格之內。(註2)。

4.精益求精非巧合

從上圖可知,透過兩階段的實驗,製程能力已經有明顯提升,然而這種成果可能持續嗎?這是合理的懷疑,為了澄清這種疑慮,最有效的方法确实是進行再現性實驗,往常述鍍膜厚度改善專案為例,運用從DOE獲得之最佳件連續生產4個月之後,均可明顯證明改善成果不但顯著而且能够持續維持,有了這些大量而客觀的證據,就能够依據DOE之獲得之最佳生產條件正式修訂S.O.P,並宣告這個改善專案正式結束(註3)。5.按圖索驥成果豐本文開始時提出了兩個全然的問題:為何推動6σ必須運用ANOVA呢?為何6σ的達成要借助DOE呢?透過上述的改善實例,我們可將其因果邏輯歸納如下,6σ是要透過持續不斷的改善來降低變異,使品質更加穩定,在這個改善過程中DOE是一個最有效且可靠的工具,結果就形成了DOE與6σ密不可分的關係,這也确实是黑帶武士訓練為何特別重視DOE及ANOVA的全然缘故,換言之若將6σ視為終極寶藏,那麼DOE确实是打開寶庫必備的一串鑰匙,其循序漸進的程序可圖示如下:

只要仔細體會此一流程圖,再多參考幾個DOE範例,不但能够澄清DOE與6σ的關係,而且只要選對加速改善的統計工具,一定可增添6σ並非遙不可及的堅定信念。一.實驗乎?遊戲乎?

試想全世界有千千萬萬的工廠,因此每天就可能有千千萬萬的「實驗」在進行,然而假如嚴謹地加以鑑定,我們會發現,其中僅有一部份能够稱的上是實驗,而其餘的都僅是遊戲而已!

一個嚴謹的實驗一定能够确信的回答下列三個問題:

●問題的類型是什麼?

●實驗的目的是什麼?

●選擇的實驗工具是否與問題之類型相符合?二.D.O.E不宜濫用

假如要開發KNOW-HOW,則D.O.E是最恰當的工具。然而何時該用?何時卻又不該用呢?這就要先從問題類型下手,一般而言,問題可分為三類:從以上問題分類表即可明白,實驗計劃法(D.O.E)嚴格地說只能適用在A型及X型問題,其他較單純之T型問題若用D.O.E來作實驗,那就成了殺雞用牛刀。

既然明白D.O.E是用在A型及X型問題上,那麼使用D.O.E的實驗策略就理應安排如下--

●策略一:篩選要紧因子(使X型問題簡化成A型問題)

●策略二:找出最佳之生產條件(使A型問題簡化成T型問題)

●策略三:證實最佳生產條件有再現性

三.實驗策略一(篩選要紧因子)

對任何工業產品而言,影響其某一品質特性之缘故應該都有专门多,以高頻電子產品常用之阻抗值的電路板(ImpedanceControlBoard)為例,可知造成阻抗之缘故就至少包括線寬、銅厚、絕緣層厚度、材質、板內濕度、錫鉛比例......等等因素,這些因素多少會對阻抗值有所影響,然而依常理判斷每一因素對阻抗值之影響程度一定不會相同,因此運用D.O.E之實驗的第一步确实是要找出這些因素對阻抗值的相對重要性。換言之,我們希望找出每一因子對阻抗值之貢獻率:既然篩選因子是首要目的,那麼第一階段的實驗就應該儘量網羅收納各種可能的因子在實驗之中,以免將來造成遺珠之恨。因此第一階段實驗之因子宜多,然而因子一多其相對的實驗成本就會提高,那又該如何是好?

為了克服此難題我們就必須從水準上加以"均衡一下"。換言之,多因子的第一階段實驗,一般應配合少水準來進行,因此2N型直交配列表确实是最常用的實驗配置了。

水準少對篩選因子的靈敏度是否會有影響呢?這是許多人心中常常存疑的另一個問題,其實這個問題似是而非,因為若假設絕緣層厚度對線路中阻抗值有影響,其關係應如下圖所示:

那麼要證實此關係並不在乎取了多少個水準(Ti),而是由我們選擇的各Ti間有多大的差距(Range)來決定。而想要讓Range變大,最簡單的方法确实是將操纵範圍內的極大值(MAX)與極小值(MIN)選入就能够了。因此若要用2N型直交配列表來篩選因子,最妥當的辦法确实是要選操作範圍之極限值來作為兩水準之參考值。根據上述之討論,一般在第一階段之實驗最常出現之配置方式是L827型或L16215型,假如要因分析做的专门徹底,那麼搭配前述之直交配列表通常是進行第一階段實驗時相當理想的策略。

四.如何判斷第一階段實驗成功

做完其第一階段的實驗,在進行變異數分析(ANOVA,TheAnalysisofVariance)後,假如出現下列兩種結果,那麼我們能够相當有把握的認定,第一階段實驗已成功了,這兩個關鍵性的結果分別是:

●在ANOVA分析中出現了1~4個顯著因子

●這些顯著因子的累積貢獻率在70%以上

假如這兩個關鍵因素未出現,那麼就應該再將實驗數據重新分析一次,因為往往會因數據輸入錯誤,而誤入歧途。反之,假如驗證之後仍然無法得到與上述兩結果吻合,那麼就應該考慮重新檢討要因及配置方式,然後重新進行第一階段的實驗才是上策。

五.實驗策略二(找出最佳之生產條件)假如第一階段的實驗經過4.4之兩關鍵性的結果驗證後證明成功了,那麼我們就能够著手進行第二階段的實驗,希望透過第二階段的實驗能找出最佳之生產條件。那麼這時進行第二階段的實驗策略到底是什麼呢?這個問題的答案要從"最佳生產條件"定義想起,一般而言,這種"最佳生產條件"應該要能符合下列兩個要求:

●生產成本要更低●產品品質要更好

首先討論怎樣的生產條件,其生產成本才會低?

一般而言,製程操纵的難易度是影響生產成本最要紧的因素。以相對濕度為例,假如其生產條件是RH50±20,那其生產成本當然就比RH50±2要低多了,有了此一方法,進行第二階段的實驗時就應該採取多水準的策略,以期望獲得田口玄一先生所謂"RobustDesign"(台語"粗勇"之意)之利益。

最佳生產條件另一個要追求的目標是產品品質要好,此一特性所引導出來的策略,确实是多水準選擇時要根據第一階段實驗結果中所顯示成果較佳之一端來作起點,以FLUX比重與焊錫品質(此處指焊點中的空洞,焊洞愈多品質愈差)之關係為例,假如第一階段實驗出現下列關係:

那麼专门顯然地在第二階段之實驗,於選擇FLUX比重應從1.1這一端下手,若需選三水準進行實驗,那麼用(1.1,1.05,1.0)將遠比選擇(0.9,0.95,1.0)要來的合理。

根據上述之討論,那麼依據成果較佳之一端來進行多水準之實驗,通常是一個十分理想的策略,遵循此一策略L934或L27313也就自然成為第二階段實驗中較常見的配置方法了。

六.如何判斷第二階段實驗成功做完第二階段的實驗,假如透過ANOVA分析而沒有出現任何顯著因子,那麼我們就要恭禧你完成了一次成功的實驗,為什麼呢?因為這種情況表示兩件特別有意義的事實:

●在第二階段的實驗中要紧的誤差差不多上隨機因素造成的。

●因為各因子皆不顯著,因此,每一因子之各項水準均可使用,在此情況下豈不是達到了成本低廉且又容易操纵之目的嗎?想活用D.O.E來開發KNOW-HOW的朋友,請對上述兩點事實要詳加玩味,因為這樣的KNOW-HOW确实是使你能用低成本、高利潤來領先同行的壓箱法寶了。

萬一在第二階段的ANOVA分析中,仍然出現了一個或兩個顯著因子,那麼您也不必灰心,因為這並不意味第二階段實驗失敗,而此結果可能只是暗示你這一兩個顯著因子可能較敏感,並非其全部水準均可造成良好結果,因此我們就必須再費一點心思用最小顯著差法(L.S.D),如下框中的說明來加以過濾,而保留住能够運用之水準,然後根據這些水準來產出KNOW-HOW。

《.t七.運氣呢?絕招呢?

在正常情況下,從第二階段的實驗中我們能够找到最佳生產條件,換言之,也确实是找到了"KNOW-HOW"了。然而謹慎的工程師,不免會想這樣得來的KNOW-HOW到底是運氣呢?還是确实絕招呢?

這個問題一定要有更多的證據才能回答,因此這時我們就要亮出D.O.E的最後一種策略--那确实是"再現性"實驗,亦是根據實驗所得到的"KNOW-HOW"再作一批樣本,看看其結果是否确实比舊方法所生產之產品為佳。假如其結果為"是",那就真是貨真價實的絕招了。

學過D.O.E的人许多,然而會靈活運用D.O.E的人卻不多,造成這種知易行難現象的癥結何在?這其中經驗當然是不容忽視的理由,但更重要的缘故卻是對"實驗策略"並未徹底瞭解,這種有勇無謀的工程師,雖然也专门賣力地作實驗,然而與KNOW-HOW每每總是擦身而過,你說這又能怪誰呢?反之,若能從實驗策略下手,好好的規劃實驗,那麼安打連連,頻頻得分,也是理所當然的事。您想開發出更多的KNOW-HOW嗎?別忘了實驗之前好好想一下您的實驗策略,想通了再下手,反而會事半功倍的!

SOP與DOE

看到標題,許多朋友可能大惑不解──「卡拜託也!SOP與DOE甘嘸啥米關係?」

沒錯,若回到數年前,沒聽過DOE的公司還不是照寫SOP嗎?用這樣的SOP還不是照樣能够通過ISO-9001或ISO-9002的認證嗎?因此在幾年前,橋歸橋、路歸路,SOP與DOE是有點井水不犯河水的味道。版權所有.尋智專業顧問有限公司

然而近年來,在國際各大知名電子公司的採購策略轉型後,國內許多業者,已開始感受到SOP必須與DOE環環相扣的必要性。版權所有.尋智專業顧問有限公司

國際知名電子公司以往的採購策略是用QVL(QualifiedVendorList)為依歸,反正任何新的供應商若要想分一杯羹,就先要經過SampleApprove的嚴苛考驗,然而這些Sample是出自什麼樣的系統呢?客戶則並不過問,因此事後有些客戶漸漸發現有些舍命擠入QVL的供應商,正式交貨之後,往往品質起伏甚大,因為十中選一甚至百中選一的Sample,其實並不能真正代表這家供應商的製造能力。

版權所有.尋智專業顧問有限公司痛定思痛,大伙儿開始思索如何才能明白一家供應商真正的能力呢?於是CertifiedSupplier的觀念就漸漸出現了,CertifiedSupplier的認證目標已不再是少數的Sample,而是針對產品的製造系統,因為系統才是隱身在產品品質背後最真實的缘故,除非有一個嚴謹而穩健的系統,否則既有供應商就無法從QualifiedVendor晉升成為CertifiedSupplier,進而享受優先議價、優先下單等夥伴級的專屬權利。有權利當然相對有義務,其中最大的義務确实是供應商要將自己的製造系統讓客戶作深入的評估(Survey),一些國際級的電子公司派出的SurveyTeam有時高達10人,他們會澈底評估每一個製程。版權所有.尋智專業顧問有限公司

在評估過程中,供應商常常會被問到的問題分別是:1.在這段製程(如噴錫)中,影響品質(如錫厚不均)

最重要的(Significant)操作參數是什麼?

2.這個參數對品質的貢獻率有多大?

3.這個參數(如風刀間隙)寫在SOP上的操作上、下限

是如何訂出來的?

4.問題2與問題3的答案是否有實驗數據來證實?

5.若有,那麼實驗獲得之最佳條件與現行SOP是否完全一致呢?

版權所有.尋智專業顧問有限公司

若貴公司被Survey,那麼貴公司能否一一回答這些問題呢?假如能够對答如流,那就值得恭禧。相反的假如會被考倒,那就表示我們過去的SOP可能只是用一般的技術資

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论