弹性力学平面问题的基本理论_第1页
弹性力学平面问题的基本理论_第2页
弹性力学平面问题的基本理论_第3页
弹性力学平面问题的基本理论_第4页
弹性力学平面问题的基本理论_第5页
已阅读5页,还剩48页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

弹性力学平面问题的基本理论第1页,课件共53页,创作于2023年2月平面问题的基本理论第二章平面问题的基本理论§2-1平面应力问题与平面应变问题§2-2平衡微分方程§2-3斜面上的应力。主应力§2-4几何方程。刚体位移§2-5物理方程§2-6边界条件§2-7圣维南原理§2-8按位移求解平面问题§2-9按应力求解平面问题。相容方程§2-10常体力情况下的简化§2-11应力函数。逆解法与半逆解法习题课1第2页,课件共53页,创作于2023年2月一、平面应力问题§2-1平面应力问题与平面应变问题

在实际问题中,任何一个弹性体严格地说都是空间物体,它所受的外力一般都是空间力系。但是,当所考察的弹性体的形状和受力情况具有一定特点时,只要经过适当的简化和力学的抽象处理,就可以归结为弹性力学平面问题。平面问题分为平面应力问题和平面应变问题。

等厚度薄板,承受平行于板面并且不沿厚度变化的面力,同时体力也平行于板面并且不沿厚度变化。σz=0τzx=0τzy=0图2-1平面问题的基本理论2第3页,课件共53页,创作于2023年2月平面问题的基本理论xy

特点:1)长、宽尺寸远大于厚度2)沿板面受有平行板面的面力,且沿厚度均布,体力平行于板面且不沿厚度变化,在平板的前后表面上无外力作用。问题相反。注意:平面应力问题z=0,但,这与平面应变3第4页,课件共53页,创作于2023年2月二、平面应变问题

很长的柱体,在柱面上承受平行于板面并且不沿长度变化的面力,同时体力也平行于板面并且不沿长度变化。εz

=0τzx=0τzy=0x

图2-2平面问题的基本理论如:水坝、受内压的圆柱管道和长水平巷道等。注意平面应变问题z=0,但问题相反。,这恰与平面应力4第5页,课件共53页,创作于2023年2月§2-2平衡微分方程

无论平面应力问题还是平面应变问题,都是在xy平面内研究问题,所有物理量均与z无关。

下面讨论物体处于平衡状态时,各点应力及体力的相互关系,并由此导出平衡微分方程。从图2-1所示的薄板取出一个微小的正平行六面体PABC(图2-3),它在z方向的尺寸取为一个单位长度。图2-3

设作用在单元体左侧面上的正应力是,右侧面上坐标得到增量,该面上的正应力为,将上式展开为泰勒级数:平面问题的基本理论5第6页,课件共53页,创作于2023年2月略去二阶及二阶以上的微量后便得同样、、都一样处理,得到图示应力状态。

对平面应力状态考虑体力时,仍可证明剪应力互等定理。以通过中心D并平行于z轴的直线为矩轴,列出力矩的平衡方程:将上式的两边除以得到:令,即略去微量不计,得:平面问题的基本理论6第7页,课件共53页,创作于2023年2月

下面推导平面应力问题的平衡微分方程,对单元体列平衡方程:平面问题的基本理论7第8页,课件共53页,创作于2023年2月

整理得:

这两个微分方程中包含着三个未知函数。因此决定应力分量的问题是超静定的;还必须考虑形变和位移,才能解决问题。对于平面应变问题,虽然前后面上还有,但它们完全不影响上述方程的建立。所以上述方程对于两种平面问题都同样适用。平面问题的基本理论8第9页,课件共53页,创作于2023年2月§2-3斜面上的应力。主应力一、斜面上的应力已知弹性体内任一点P处的应力分量,求经过该点任意斜截面上的应力。为此在P点附近取一个平面AB,它平行于上述斜面,并与经过P点而垂直于x轴和y轴的两个平面画出一个微小的三角板或三楞柱PAB。当平面AB与P点无限接近时,平面AB上的平均应力就成为上述斜面上的应力。

设AB面在xy平面内的长度为dS,N为该面的外法线方向,其方向余弦为:平面问题的基本理论9图2-4第10页,课件共53页,创作于2023年2月

斜面AB上全应力沿x轴及y轴的投影分别为XN和YN。由PAB的平衡条件可得:除以即得:同样由得出:斜面AB上的正应力,由投影可得:斜面AB上的剪应力,由投影可得:平面问题的基本理论10第11页,课件共53页,创作于2023年2月二、主应力

如果经过P点的某一斜面上的剪应力等于零,则该斜面上的正应力称为P点的一个主应力,而该斜面称为P点的一个应力主面,该斜面的法线方向称为P点的一个应力主向。1.主应力的大小2.主应力的方向与互相垂直。平面问题的基本理论11第12页,课件共53页,创作于2023年2月§2-4几何方程、刚体位移

在平面问题中,弹性体中各点都可能产生任意方向的位移。通过弹性体内的任一点P,取一单元体PAB,如图2-5所示。弹性体受力以后P、A、B三点分别移动到P′、A′、B′。图2-5一、P点的正应变

在这里由于小变形,由y方向位移v所引起的PA的伸缩是高一阶的微量,略去不计。平面问题的基本理论12第13页,课件共53页,创作于2023年2月同理可求得:二、P点的剪应变线段PA的转角:同理可得线段PB的转角:所以平面问题的基本理论13第14页,课件共53页,创作于2023年2月因此得到平面问题的几何方程:

由几何方程可见,当物体的位移分量完全确定时,形变分量即可完全确定。反之,当形变分量完全确定时,唯一分量却不能完全确定。平面问题的基本理论14第15页,课件共53页,创作于2023年2月§2-5物理方程

在完全弹性的各向同性体内,形变分量与应力分量之间的关系根据虎克定律建立如下:平面问题的基本理论15第16页,课件共53页,创作于2023年2月

式中,E为弹性模量;G为刚度模量;为泊松比。三者的关系:一、平面应力问题的物理方程且有:平面问题的基本理论16第17页,课件共53页,创作于2023年2月二、平面应变问题的物理方程三、平面应力的应力应变关系式与平面应变的关系式之间的变换关系将平面应力中的关系式:平面问题的基本理论17第18页,课件共53页,创作于2023年2月作代换就可得到平面应变中的关系式:

由于这种相似性,在解平面应变问题时,可把对应的平面问题的方程和解答中的弹性常数进行上述代换,就可得到相应的平面应变问题的解。平面问题的基本理论18第19页,课件共53页,创作于2023年2月§2-6边界条件

当物体处于平衡状态时,其内部各点的应力状态应满足平衡微分方程;在边界上应满足边界条件。按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和混合边界问题。一、位移边界条件

当边界上已知位移时,应建立物体边界上点的位移与给定位移相等的条件。如令给定位移的边界为,则有(在上):其中和表示边界上的位移分量,而和在边界上是坐标的已知函数。平面问题的基本理论19第20页,课件共53页,创作于2023年2月二、应力边界条件

当物体的边界上给定面力时,则物体边界上的应力应满足与面力相平衡的力的平衡条件。其中和为面力分量,、、、为边界上的应力分量。

当边界面垂直于轴时,应力边界条件简化为:

当边界面垂直于轴时,应力边界条件简化为:平面问题的基本理论20第21页,课件共53页,创作于2023年2月三、混合边界条件1.物体的一部分边界上具有已知位移,因而具有位移边界条件,令一部分边界上则具有已知面力。则两部分边界上分别有应力边界条件和位移边界条件。如图2-6,悬臂梁左端面有位移边界条件:上下面有应力边界条件:右端面有应力边界条件:图2-6平面问题的基本理论21第22页,课件共53页,创作于2023年2月2.在同一边界上,既有应力边界条件又有位移边界条件。如图2-7连杆支撑边界条件:如图2-8齿槽边界条件:图2-7图2-8平面问题的基本理论22第23页,课件共53页,创作于2023年2月§2-7圣维南原理一、圣维南原理

如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受的影响可以不计。二、举例

设有柱形构件,在两端截面的形心受到大小相等而方向相反的拉力,如图2-9a。如果把一端或两端的拉力变换为静力等效的力,如图2-9b或2-9c,只有虚线划出的部分的应力分布有显著的改变,而其余部分所受的影响是可以不计的。如果再将两端的拉力变换为均匀分布的拉力,集度等于,其中为构件的横截面面积,如图2-9d,仍然只有靠近两端部分的应力受到显著的影响。平面问题的基本理论25第24页,课件共53页,创作于2023年2月图2-9(a)(b)(c)(d)(e)

在上述四种情况下,离开两端较远的部分的应力分布,并没有显著的差别。注意:

应用圣维南原理,绝不能离开“静力等效”的条件。平面问题的基本理论26第25页,课件共53页,创作于2023年2月§2-8按位移求解平面问题

在弹性力学里求解问题,有三种基本方法:按位移求解、按应力求解和混合求解。

按位移求解时,以位移分量为基本未知函数,由一些只包含位移分量的微分方程和边界条件求出位移分量以后,再用几何方程求出形变分量,从而用物理方程求出应力分量。一、平面应力问题在平面应力问题中,物理方程为:平面问题的基本理论27第26页,课件共53页,创作于2023年2月由上列三式求解应力分量,得:将几何方程代入,得弹性方程:再将式(a)代入平衡微分方程,简化以后,即得:(a)这是用位移表示的平衡微分方程,也就是按位移求解平面应力问题时所需用的基本微分方程。(1)平面问题的基本理论28第27页,课件共53页,创作于2023年2月将(a)式代入应力边界条件,简化以后,得:这是用位移表示的应力边界条件,也就是按位移求解平面应力问题时所用的应力边界条件。(2)

总结起来,按位移求解平面应力问题时,要使得位移分量满足微分方程(1),并在边界上满足位移边界条件或应力边界条件(2)。求出位移分量以后,用几何方程求出形变分量,再用物理方程求出应力分量。二、平面应变问题

只须将平面应力问题的各个方程中和作代换:平面问题的基本理论29第28页,课件共53页,创作于2023年2月§2-9按应力求解平面问题。相容方程

按位移求解平面问题时,必须求解联立的两个二阶偏微分方程,这在数学上是相当困难的。而按应力求解弹性力学平面问题,则避免了这个困难,故更多采用的是按应力求解。

按应力求解时,以应力分量为基本未知函数,由一些只包含应力分量的微分方程和边界条件求出应力分量以后,再用物理方程求出形变分量,从而用几何方程求出位移分量。相容方程由平面问题的几何方程:平面问题的基本理论30第29页,课件共53页,创作于2023年2月可得:即:这个关系式称为形变协调方程或相容方程。(一)平面应力相容方程(二)平面应变相容方程平面问题的基本理论31第30页,课件共53页,创作于2023年2月

按应力求解平面问题时,无论是平面应力问题还是平面应变问题,应力分量除了满足平衡微分方程和相容方程外,在边界上还应当满足应力边界条件。平面问题的基本理论32第31页,课件共53页,创作于2023年2月§2-10常体力情况下的简化可见,在常体力的情况下,应当满足拉普拉斯微分方程(调和方程),应当是调和函数。用记号代表,上式简写为:

常体力下,两种平面问题的相容方程都简化为:结论

在单连体的应力边界问题中,如果两个弹性体具有相同的边界形状,并受到同样分布的外力,那么,不管这两个弹性体的材料是否相同,也不管它们是在平面应力情况下或是在平面应变情况下,应力分量、、的分布是相同的(两种平面问题中的应力分量,以及形变和位移,却不一定相同)。平面问题的基本理论33第32页,课件共53页,创作于2023年2月推论2

在用实验方法测量结构或构件的上述应力分量时,可以用便于量测的材料来制造模型,以代替原来不便于量测的结构或构件材料;还可以用平面应变情况下的长柱形的结构或构件。推论3

常体力的情况下,对于单连体的应力边界问题,还可以把体力的作用改换为面力的作用,以便于解答问题和实验量测。推论1

针对任一物体而求出的应力分量、、,也适用于具有同样边界并受有同样外力的其它材料的物体;针对平面应力问题而求出的这些应力分量,也适用于边界相同、外力相同的平面应变情况下的物体。平面问题的基本理论34第33页,课件共53页,创作于2023年2月§2-11应力函数。逆解法与半逆解法一、应力函数

按应力求解应力边界问题时,在体力为常量的情况下,应力分量、、应当满足平衡微分方程:(a)以及相容方程(b)

方程(a)的解包含两部分:任意一个特解和下列齐次微分方程的通解。平面问题的基本理论35第34页,课件共53页,创作于2023年2月特解取为:

将齐次微分方程(c)中前一个方程改写为:根据微分方程理论,一定存在某一个函数,使得:(c)(d)(e)(f)平面问题的基本理论36第35页,课件共53页,创作于2023年2月

同样将(c)中的第二个方程改写为:也一定存在某一个函数,使得:(g)(h)由式(f)及(h)得:因而一定存在某一个函数,使得:(i)(j)平面问题的基本理论37第36页,课件共53页,创作于2023年2月将式(i)代入(e),式(j)代入(g),并将式(i)代入(f),即得通解:(k)

将通解(k)与特解(d)叠加,即得微分方程(a)的全解:函数称为平面问题的应力函数,也称为艾瑞应力函数。(1)

为了应力分量(1)同时也能满足相容方程(b),将(1)代入式(b),即得:上式可简化为:平面问题的基本理论38第37页,课件共53页,创作于2023年2月或者展开为:进一步简化为:(2)

按应力求解应力边界问题时,如果体力是常量,就只须由微分方程(2)求解应力函数,然后用公式(1)求出应力分量,但这些应力分量在边界上应当满足应力边界条件。二、逆解法与半逆解法逆解法:先设定各种形式的、满足相容方程(2)的应力函数,用公式(1)求出应力分量,然后根据应力边界条件来考察,在各种形状的弹性体上,这些应力分量对应于什么样的面力,从而得知所设定的应力函数可以解决什么问题。平面问题的基本理论逆解法基本步骤:39第38页,课件共53页,创作于2023年2月半逆解法:针对所要求解的问题,根据弹性体的边界形状和受力情况,假设部分和全部应力分量为某种形式的函数,从而推出应力函数,然后来考察,这个应力函数是否满足相容方程,以及,原来所假设的应力分量和由这个应力函数求出的其余应力分量,是否满足应力边界条件和位移单值条件。如果相容方程和各方面的条件都能满足,自然就得出正确的解答;如果某一方面不能满足,就要另作假设,重新考察。平面问题的基本理论设定求出应力分量求出面力(合力)解决什么问题代入代入式(l)应力边界条件确定半逆解法基本步骤:设定导出应力表达式得到正确解答满足边界条件满足是是否否式(l)应力边界条件40第39页,课件共53页,创作于2023年2月《平面问题的基本理论》习题课[练习1]悬臂梁上部受线形分布载荷,如图所示。试根据材料力学中的表达式,再用平衡微分方程导出和的表达式。解:由材料力学知,过点横截面上的弯矩为:(1)代入平衡微分方程,得:(2)平面问题的基本理论41第40页,课件共53页,创作于2023年2月利用上、下面边界条件确定将式(3)代入平衡微分方程中的第二式,得:(4)(3)注意:式(1)、(3)、(4)表达的仅是静力可能的应力分量,若为正确解答,则还需满足以应力表示的相容方程。平面问题的基本理论42第41页,课件共53页,创作于2023年2月[练习2]如图所示为平面物体,角和角均为直角,其附近边界表面均不受外力,试说明、两点的应力状态。解:由于点附近边界不受外力,该点的应力分量应满足如下边界条件:即点处于零应力状态。而点处于凹角的顶点,该点所取的微分单元体的各个面均不是边界面,因此,其上的应力分量是未知的,未必为零,由理论分析知,凹角处点的应力趋于无限大。平面问题的基本理论43第42页,课件共53页,创作于2023年2月[练习3]试写出表中所示各平面物体的位移边界条件(用直角坐标),其中第二图中点不动,过点的水平线段无转动。解:各位移边界条件见表所列。平面问题的基本理论44第43页,课件共53页,创作于2023年2月平面问题的基本理论45第44页,课件共53页,创作于2023年2月[练习4]

图所示的几种受力体是否为平面问题?若是,则是平面应力问题,还是平面应变问题?ROqxyqhzyoR>>ha)hQQOzyxyROR>>hb)平面问题的基本理论第45页,课件共53页,创作于2023年2月R<<lpROpyxOpzlpyc)图a)所示为平面应力问题。图b)所示荷载垂直作用于板面,故为薄板弯曲问题。图c)所示荷载作用于板边,荷载及横截面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论