广东省深圳市格睿特高级中学2023年数学高一下期末考试试题含解析_第1页
广东省深圳市格睿特高级中学2023年数学高一下期末考试试题含解析_第2页
广东省深圳市格睿特高级中学2023年数学高一下期末考试试题含解析_第3页
广东省深圳市格睿特高级中学2023年数学高一下期末考试试题含解析_第4页
广东省深圳市格睿特高级中学2023年数学高一下期末考试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,已知、、分别是角、、的对边,若,则的形状为A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形或直角三角形2.在△ABC中,sinA:sinB:sinC=4:3:2,则cosA的值是()A. B. C. D.3.如图,在正方体中,,分别是中点,则异面直线与所成角大小为().A. B. C. D.4.点、、、在同一个球的球面上,,.若四面体的体积的最大值为,则这个球的表面积为()A. B. C. D.5.有一个容量为200的样本,样本数据分组为,,,,,其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间内的频数为()A.48 B.60 C.64 D.726.在中,是斜边上的两个动点,且,则的取值范围为()A. B. C. D.7.已知、是球的球面上的两点,,点为该球面上的动点,若三棱锥体积的最大值为,则球的表面积为()A. B. C. D.8.在中,,,,则的面积是().A. B. C.或 D.或9.甲、乙两名运动员分别进行了5次射击训练,成绩如下:甲:7,7,8,8,1;乙:8,9,9,9,1.若甲、乙两名运动员的平均成绩分别用表示,方差分别用表示,则A. B.C. D.10.已知锐角△ABC的面积为,BC=4,CA=3,则角C的大小为()A.75° B.60° C.45° D.30°二、填空题:本大题共6小题,每小题5分,共30分。11.关于的方程()的两虚根为、,且,则实数的值是________.12.,则f(f(2))的值为____________.13.设实数满足,则的最小值为_____14.设等差数列,的前项和分别为,,若,则__________.15.已知在数列中,,,则数列的通项公式______.16.已知圆锥的母线长为1,侧面展开图的圆心角为,则该圆锥的体积是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,有一直径为8米的半圆形空地,现计划种植甲、乙两种水果,已知单位面积种植甲水果的经济价值是种植乙水果经济价值的5倍,但种植甲水果需要有辅助光照.半圆周上的处恰有一可旋转光源满足甲水果生长的需要,该光源照射范围是,点在直径上,且.(1)若,求的长;(2)设,求该空地产生最大经济价值时种植甲种水果的面积.18.已知.(1)求;(2)求向量与的夹角的余弦值.19.如图,已知点P在圆柱OO1的底面⊙O上,分别为⊙O、⊙O1的直径,且平面.(1)求证:;(2)若圆柱的体积,①求三棱锥A1﹣APB的体积.②在线段AP上是否存在一点M,使异面直线OM与所成角的余弦值为?若存在,请指出M的位置,并证明;若不存在,请说明理由.20.已知为坐标原点,,,若.(Ⅰ)求函数的单调递减区间;(Ⅱ)当时,若方程有根,求的取值范围.21.如图,在△ABC中,AB=8,AC=3,∠BAC=60°,以点A为圆心,r=2为半径作一个圆,设PQ为圆A的一条直径.(1)请用表示,用表示;(2)记∠BAP=θ,求的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

由,利用正弦定理可得,进而可得sin2A=sin2B,由此可得结论.【详解】∵,∴由正弦定理可得∴sinAcosA=sinBcosB∴sin2A=sin2B∴2A=2B或2A+2B=π∴A=B或A+B=∴△ABC的形状是等腰三角形或直角三角形故选D.【点睛】判断三角形形状的常见方法是:(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断;(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断;(3)根据余弦定理确定一个内角为钝角进而知其为钝角三角形.2、A【解析】

由正弦定理可得,再结合余弦定理求解即可.【详解】解:因为在△ABC中,sinA:sinB:sinC=4:3:2,由正弦定理可得,不妨令,由余弦定理可得,故选:A.【点睛】本题考查了正弦定理及余弦定理,重点考查了运算能力,属基础题.3、C【解析】

通过中位线定理可以得到在正方体中,可以得到所以这样找到异面直线与所成角,通过计算求解.【详解】分别是中点,所以有而,因此异面直线与所成角为在正方体中,,所以,故本题选C.【点睛】本题考查了异面直线所成的角.4、D【解析】

根据几何体的特征,小圆的圆心为,若四面体的体积取最大值,由于底面积不变,高最大时体积最大,可得与面垂直时体积最大,从而求出球的半径,即可求出球的表面积.【详解】根据题意知,、、三点均在球心的表面上,且,,,则的外接圆半径为,的面积为,小圆的圆心为,若四面体的体积取最大值,由于底面积不变,高最大时体积最大,所以,当与面垂直时体积最大,最大值为,,设球的半径为,则在直角中,,即,解得,因此,球的表面积为.故选:D.【点睛】本题考查的知识点是球内接多面体,球的表面积,其中分析出何时四面体体积取最大值,是解答的关键.5、B【解析】

由,求出,计算出数据落在区间内的频率,即可求解.【详解】由,解得,所以数据落在区间内的频率为,所以数据落在区间内的频数,故选B.【点睛】本题主要考查了频率分布直方图,频率、频数,属于中档题.6、A【解析】

可借助直线方程和平面直角坐标系,代换出之间的关系,再结合向量的数量积公式进行求解即可【详解】如图所示:设直线方程为:,,,由得,可设,则,,,,当时,,故故选A【点睛】本题考查向量数量积的坐标运算,向量法在几何中的应用,属于中档题7、A【解析】

当点位于垂直于面的直径端点时,三棱锥的体积最大,利用三棱锥体积的最大值为,求出半径,即可求出球的表面积.【详解】如图所示,当点位于垂直于面的直径端点时,三棱锥的体积最大,设球的半径为,此时,.因此,球的表面积为.故选:A.【点睛】本题考查球的半径与表面积的计算,确定点的位置是关键,考查分析问题和解决问题的能力,属于中等题.8、C【解析】,∴,或.()当时,.∴.()当时,.∴.故选.9、D【解析】

分别计算平均值和方差,比较得到答案.【详解】由题意可得,,.故.故答案选D【点睛】本题考查了数据的平均值和方差的计算,意在考查学生的计算能力.10、B【解析】试题分析:由三角形的面积公式,得,即,解得,又因为三角形为锐角三角形,所以.考点:三角形的面积公式.二、填空题:本大题共6小题,每小题5分,共30分。11、5【解析】

关于方程两数根为与,由根与系数的关系得:,,由及与互为共轭复数可得答案.【详解】解:与是方程的两根由根与系数的关系得:,,由与为虚数根得:,,则,解得,经验证,符合要求,故答案为:.【点睛】本题考查根与系数的关系的应用.求解是要注意与为虚数根情形,否则漏解,属于基础题.12、1【解析】

先求f(1),再根据f(1)值所在区间求f(f(1)).【详解】由题意,f(1)=log3(11–1)=1,故f(f(1))=f(1)=1×e1–1=1,故答案为:1.【点睛】本题考查分段函数求值,考查对应性以及基本求解能力.13、1.【解析】

由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】解:由实数满足作出可行域如图,

由图形可知:.

令,化为,

由图可知,当直线过点时,直线在轴上的截距最小,有最小值为1.

故答案为:1.【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.14、【解析】分析:首先根据等差数列的性质得到,利用分数的性质,将项的比值转化为和的比值,从而求得结果.详解:根据题意有,所以答案是.点睛:该题考查的是有关等差数列的性质的问题,将两个等差数列的项的比值可以转化为其和的比值,结论为,从而求得结果.15、【解析】

通过变形可知,累乘计算即得结论.【详解】∵(n+1)an=nan+1,∴,∴,,…,,累乘得:,又∵a1=1,∴an=n,故答案为:an=n.【点睛】本题考查数列的通项公式的求法,利用累乘法是解决本题的关键,注意解题方法的积累,属于中档题.16、【解析】

根据题意得,解得,求得圆锥的高,利用体积公式,即可求解.【详解】设圆锥底面的半径为,根据题意得,解得,所以圆锥的高,所以圆锥的体积.【点睛】本题主要考查了圆锥的体积的计算,以及圆锥的侧面展开图的应用,其中解答中根据圆锥的侧面展开图,求得圆锥的底面圆的半径是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)1或3(2)【解析】

试题分析:(1)在中,因为,,,所以由余弦定理,且,,所以,解得或(2)该空地产生最大经济价值等价于种植甲种水果的面积最大,所以用表示出,再利用三角函数求最值得试题解析:(1)连结,已知点在以为直径的半圆周上,所以为直角三角形,因为,,所以,,在中由余弦定理,且,所以,解得或,(2)因为,,所以,所以,在中由正弦定理得:所以,在中,由正弦定理得:所以,若产生最大经济效益,则的面积最大,,因为,所以所以当时,取最大值为,此时该地块产生的经济价值最大考点:①解三角形及正弦定理的应用②三角函数求最值18、(1);(2).【解析】

(1)根据题意求出,即可求解;(2)向量与的夹角的余弦值为:代入求值即可得解.【详解】(1)由题:,解得:(2)向量与的夹角的余弦值为:【点睛】此题考查平面向量数量积的运算,根据运算法则求解数量积和模长,求解向量夹角的余弦值.19、(1)见解析;(2)①,②见解析【解析】

(1)根据,得出平面,故而;(2)①根据圆柱的体积计算,根据计算,,代入体积公式计算棱锥的体积;②先证明就是异面直线与所成的角,然后根据可得,故为的中点.【详解】(1)证明:∵P在⊙O上,AB是⊙O的直径,平面又,平面,又平面,故.(2)①由题意,解得,由,得,,∴三棱锥的体积.②在AP上存在一点M,当M为AP的中点时,使异面直线OM与所成角的余弦值为.证明:∵O、M分别为的中点,则,就是异面直线OM与所成的角,又,在中,.∴在AP上存在一点M,当M为AP的中点时,使异面直线OM与所成角的余弦值为.【点睛】本题主要考查了线面垂直的判定与性质,棱锥的体积计算以及异面直线所成的角,属于中档题.20、(1)的单调减区间为;(2).【解析】试题分析:(1)根据向量点积的坐标运算得到,根据正弦函数的单调性得到单调递减区间;(2)将式子变形为.有解,转化为值域问题.解析:(Ⅰ)∵,,∴其单调递减区间满足,,所以的单调减区间为.(Ⅱ)∵当时,方程有根,∴.∵,∴,∴,∴,∴.点睛:这个题目考查了,向量点积运算,三角函数的化一公式,,正弦函数的单调性问题,三角函数的值域和图像问题.第二问还要用到了方程的零点的问题.一般函数的零点和方程的根,图象的交点是同一个问题,可以互相转化.21、(1);(2)22.【解析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论