版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
关于阿波罗尼奥斯圆锥曲线第1页,讲稿共39页,2023年5月2日,星期三一、圆锥曲线的由来圆锥曲线是椭圆、双曲线、抛物线的统称,因为他们都可以通过“用平面截圆锥”来得到,所以叫圆锥曲线。第一个考察圆锥曲线的事希腊学者梅内赫莫斯(公元前375-前325)第2页,讲稿共39页,2023年5月2日,星期三
圆锥曲线的雏形他取三个顶点分别为直角锐角和钝角的正圆锥,然后各作一个平面分别垂直于三个圆锥的一条母线,并与圆锥相截:他把所得三条截线分别称为“直角圆锥截线”,“锐角圆锥截线”和“钝角圆锥截线”,实际上就是今天我们所说的抛物线,椭圆,一支等轴双曲线:这是圆锥曲线最早的名称。第3页,讲稿共39页,2023年5月2日,星期三当时,这三种曲线均以圆锥曲面为基础得到,但这三种曲线是分别以三种不同的圆锥曲面作为基础得到的。约一百年后,古希腊的著名数学家阿波罗尼奥斯更详尽、更系统地研究了圆锥曲线。第4页,讲稿共39页,2023年5月2日,星期三阿波罗尼奥斯的圆锥曲线论阿波罗尼奥斯发现,所有三种曲线只要以一种圆锥曲线为媒介就够了,需要改变的只是界面的位置,而且作为媒介的圆锥曲面可以取上面三种中的任何一种第5页,讲稿共39页,2023年5月2日,星期三阿波罗尼奥斯与圆锥曲线论第6页,讲稿共39页,2023年5月2日,星期三拋物線雙曲線第7页,讲稿共39页,2023年5月2日,星期三当截面与圆锥地面的夹角小于圆锥母线与圆锥地面的夹角时,截面是椭圆,当这两角相等时,截线是抛物线,当前一个角大于后一个角时,截线是双曲线。第8页,讲稿共39页,2023年5月2日,星期三简介阿波罗尼奥斯(Apollonius)公元前262年出生于小亚细亚的玻尔加,公元前190年卒于古埃及的亚历山大。亚历山大时期第三位重要的数学家,与欧几里得、阿基米德齐名,其贡献涉及几何学和天文学。第9页,讲稿共39页,2023年5月2日,星期三生平《圆锥曲线论》是一部经典巨作,可以说代表了希腊几何的最高水平,直至17世纪笛卡尔、帕斯卡出场之前,始终无人能够超越。阿波罗尼奥斯写此书被后世译者称为“大几何学家”。第10页,讲稿共39页,2023年5月2日,星期三《圆锥曲线论》全书共八卷,含487个命题。此书集前人之大成,且提出很多新的性质。他推广了梅内克缪斯的方法,证明三圆锥曲线可以由同一个圆锥体截取而得,并给出抛物线、椭圆、双曲线、正焦弦等名称。他以圆锥体底面直径为横坐标,过顶点的垂线为纵坐标,这给后世坐标几何的建立以很大的启发。他在解释太阳系内5大行星的运动时,提出了本轮均轮偏心模型,为托勒密的地心说提供了工具。第11页,讲稿共39页,2023年5月2日,星期三学习生涯阿波罗尼奥斯年青时到亚历山大跟随欧几里得的后继者学习,那时是托勒密三世(246BC—221BC)统治时期,到了托勒密四世(221BC—205BC)时代,他在天文学研究方面已颇有名气。后来到过小亚细亚西岸的帕加马王国居住与工作,晚年回到亚历山大,并卒于该城。第12页,讲稿共39页,2023年5月2日,星期三贡献阿波罗尼奥斯的主要成就是建立了完美的圆锥曲线论,总结了前人在这方面的工作,再加上自己的研究成果,撰成了《圆锥曲线论,将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地。第13页,讲稿共39页,2023年5月2日,星期三除《圆锥曲线论》外,阿波罗尼奥斯还有好几种著作,为后世学者(特别是帕波斯)所提及。列举如下:1《截取线段成定比》2《截取面积等于已知面积》3《论接触》4《平面轨迹》5《倾斜》6《十二面体与二十面体对比》第14页,讲稿共39页,2023年5月2日,星期三此外还有《无序无理量》、《取火镜》、圆周率计算以及天文学方面的著述等。阿波罗尼奥斯和欧几里得、阿基米德合称为亚历山大前期的三大数学家(约300BC—200BC),这是古希腊数学的全盛时期或“黄金时代”。第15页,讲稿共39页,2023年5月2日,星期三二、圆锥曲线的定义椭圆:平面上到两定点F1,F2(焦点)的距离之和为定长的动点的轨迹称为椭圆双曲线:平面上到两定点F1,F2(焦点)的距离之差的绝对值为定长的动点的轨迹称为双曲线抛物线:平面上到一定点F的距离与到一定直线的距离相等的动点的轨迹称为抛物线。第16页,讲稿共39页,2023年5月2日,星期三圆锥曲线的统一定义平面上到一定点F的距离与到一不过该定点的定直线L的距离之比为常数e的动点的轨迹称为圆锥曲线。e<1为椭圆e>1为双曲线e=1为抛物线。第17页,讲稿共39页,2023年5月2日,星期三离心率的变化过程第18页,讲稿共39页,2023年5月2日,星期三离心率的连续量变从上图可以看出:离心率的连续量变导致了曲线的之变:当e从小于1逐渐趋于1时,椭圆从右边逐渐趋近于抛物线当e从大于1逐渐趋于1时,双曲线的左支逐渐远离原点,而右支从左边逐渐趋近于抛物线。可以将抛物线看成是e趋向于1时椭圆和双曲线的极限形式第19页,讲稿共39页,2023年5月2日,星期三圆锥曲线统一形式在直角坐标系下,三种不同的圆锥曲线的方程也可以具有统一的形式。见P163.17世纪的开普勒和18世纪的欧拉就已经有了这种从运动的、变化的观点,把各种圆锥曲线看做是在同一个系统中的看法。第20页,讲稿共39页,2023年5月2日,星期三数学的统一美从给出三种圆锥曲线分别的定义到统一的定义,让我们看到数学的“统一美”。只有抓住了不同事物共同的本质,才能用统一的观点,统一的语言来描述几种不同的事物。事物的本质是内在的,当我们用统一的语言把它叙述出来时,这种内在的本质就外化了,让我们有一种透过现象看到本质的快感。第21页,讲稿共39页,2023年5月2日,星期三开普勒的行星定律开普勒(15711630)第22页,讲稿共39页,2023年5月2日,星期三开普勒的行星定律开普勒的行星定律是以布拉赫數十年對於行星運行的觀察數據為基礎,再花十多年功夫才找到一個吻合布拉赫數據的數學模型。他終於在1609年完成了火星運行的數學理論。第23页,讲稿共39页,2023年5月2日,星期三开普勒的行星定律第一定律:行星沿橢圓軌道繞太陽運行,太陽位於橢圓的一個焦點之上。第二定律:在相等時間內,連接每顆行星與太陽的向徑所掃過的面積皆相等。第三定律:每顆行星繞太陽運動的公轉周期的平方與它們到太陽的平均距離的立方成正比。第24页,讲稿共39页,2023年5月2日,星期三开普勒的行星定律太陽火星开普勒的发现,为圆锥曲线的研究添上了一层实际的意义。第25页,讲稿共39页,2023年5月2日,星期三三个宇宙速度与发射体的轨迹第一宇宙速度(环绕地球速度)V1=7.91km/s,第二宇宙速度(脱离地球速度):V2=11.2km/s第三宇宙速度(脱离太阳系速度)V3=16.7km/s在V1<V<V2,发射体的轨道是椭圆V=V2,发射体的轨道是抛物线(的一半)V>V2,发射体远离,轨道是双曲线一支(的一半),不再回到地球。第26页,讲稿共39页,2023年5月2日,星期三V2<=V<V3,发射体的轨道是以太阳为一个焦点的椭圆,发射体成为一个人造行星。V>=V3,发射体将挣脱太阳的引力,飞到太阳系以外去。第27页,讲稿共39页,2023年5月2日,星期三三、抛物线的应用能反射光线的镜面的纵剖面是一条抛物线,它有一个特性:从置放在抛物线焦点的点光源发出的光线,经抛物线反射后的光线都是平行的;反之,入射的平行光线经抛物线反射后的光线都经过焦点第28页,讲稿共39页,2023年5月2日,星期三抛物线的应用汽车前灯第29页,讲稿共39页,2023年5月2日,星期三抛物线的应用太阳灶:利用太阳光为平行光,经过抛物镜面的反射而集中于焦点,在焦点处产生高温(焦点的由来)F90285第30页,讲稿共39页,2023年5月2日,星期三抛物线的应用矿山爆破时,在爆破点处炸开的矿石的轨迹是不同的抛物线。根据地质、炸药的因素可以算出这些抛物线的范围。这个范围的边界又是一条抛物线,叫做“安全抛物线”。见教材P168:图3.5.13第31页,讲稿共39页,2023年5月2日,星期三双曲线的建筑方面的应用双曲线绕虚轴旋转形成单叶双曲面,单叶双曲面上有两族直母线。在建筑上可以把钢筋作为两族直母线,使他们构成单叶双曲面。这样设计的建筑物非常轻巧又坚固。第32页,讲稿共39页,2023年5月2日,星期三单叶双曲面之冷却塔27121455第33页,讲稿共39页,2023年5月2日,星期三广州电视塔小蛮腰其设计师是荷兰IBA事务所的马克·海默尔和芭芭拉·库伊特。有一天,我在厨房把一些弹性橡皮绳绑在两个椭圆形的木盘之间,一个在底部,一个在顶部。当我开始旋转顶部椭圆的时候,一个复杂的形状出现了。我开始激动起来,要从这个简单的想法开始,把它发展成一个建筑物。第34页,讲稿共39页,2023年5月2日,星期三小蛮腰第35页,讲稿共39页,2023年5月2日,星期三小蛮腰第36页,讲稿共39页,2023年5月2日,星期三双曲线在航海中的应用海上航行的轮船有一种“双曲线时差定位法”,就是利用“双曲线上的点到两焦点的距离之差为一个常数”的原理设计的。第37页,讲稿共39页,2023年5月2日,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《科学研究方法》教学大纲
- 玉溪师范学院《统计学》2021-2022学年第一学期期末试卷
- 玉溪师范学院《曲式分析基础》2023-2024学年第一学期期末试卷
- 家用制冷电器具账务处理实例-记账实操
- 关于黄瓜美术课件
- 心肺复苏操作流程培训课件
- 子夜课件怎么做
- 2024年计算机数字信号处理板卡项目成效分析报告
- 2024年老年旅游项目评价分析报告
- 不用出租金种地合同协议书
- 水幕系统设备维护方案
- 遗失及损毁责任约定
- 臂丛神经MR成像课件
- 青春期女生的自尊自爱课件
- 采购计划制定
- 双塔精馏正常操作双塔精馏正常操作
- 振荡指标MACD(波段操作精解)
- 2024年四川航空股份有限公司招聘笔试参考题库含答案解析
- 医学检验专业职业规划书
- 喘证诊疗方案临床疗效评价总结分析
- 慈善协会各项管理制度
评论
0/150
提交评论