2022-2023学年四川省自贡市第十中学高一数学理期末试题含解析_第1页
2022-2023学年四川省自贡市第十中学高一数学理期末试题含解析_第2页
2022-2023学年四川省自贡市第十中学高一数学理期末试题含解析_第3页
2022-2023学年四川省自贡市第十中学高一数学理期末试题含解析_第4页
2022-2023学年四川省自贡市第十中学高一数学理期末试题含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年四川省自贡市第十中学高一数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数,则f(x)的最小正周期是(

)A.

B.

C.

D.参考答案:C2.在△ABC中,若则△ABC是(

)A.等边三角形

B.锐角三角形

C.钝角三角形

D.直角三角形参考答案:D略3.等腰三角形一腰上的高是,这条高与底边的夹角为,则底边长为(

)A.

B.

C.

D.参考答案:D

解析:作出图形4.若不等式的解集为R,则实数m的取值范围是(

)A.(-2,2) B.(-2,2]C.(-∞,-2)∪[2,+∞) D.(-∞,2)参考答案:B试题分析:可化为,当时,不等式为4>0,恒成立,当时,不等式的解集为R,则,解得;综上有.故选B.5.已知偶函数在区间[0,+∞)单调递增,则满足的x取值范围是()A. B. C. D.参考答案:A【分析】由题意可得,再利用函数的单调性和奇偶性可得,由此求得的取值范围,得到答案.【详解】由题意,函数为偶函数,且在区间上为单调递增函数,又因为,即,所以,即,求得,故选A.【点睛】本题主要考查了函数的单调性和奇偶性的应用,其中根据函数的奇偶性和函数的单调性,把不等式转化为求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.6.参考答案:A7.终边在第二象限的角的集合可以表示为()A.{α|90°<α<180°}B.{α|90°+k·180°<α<180°+k·180°,k∈Z}C.{α|-270°+k·180°<α<-180°+k·180°,k∈Z}D.{α|-270°+k·360°<α<-180°+k·360°,k∈Z}参考答案:D[终边在第二象限的角的集合可表示为{α|90°+k·360°<α<180°+k·360°,k∈Z},而选项D是从顺时针方向来看的,故选项D正确.]8.已知集合,,则().A.{1,3} B.{2,4,5} C.{1,2,3,4,5} D.参考答案:A解:∵集合,,∴,故选:.9.化简的结果为A.a16

B.a8

C.a4

D.a2参考答案:D略10.函数的单调递减区间是(

)A.

B.C.

D.

参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.袋里装有5个球,每个球都记有1~5中的一个号码,设号码为x的球质量为(x2-5x+30)克,这些球以同等的机会(不受质量的影响)从袋里取出.若同时从袋内任意取出两球,则它们质量相等的概率是________.参考答案:略12.高一(1)班共有50名学生,在数学课上全班学生一起做两道数学试题,其中一道是关于集合的试题,一道是关于函数的试题,已知关于集合的试题做正确的有40人,关于函数的试题做正确的有31人,两道题都做错的有4人,则这两道题都做对的有

人.参考答案:25【考点】Venn图表达集合的关系及运算.【分析】设这两道题都做对的有x人,则40+31﹣x+4=50,由此可得这两道题都做对的人数.【解答】解:设这两道题都做对的有x人,则40+31﹣x+4=50,∴x=25.故答案为25.【点评】本题考查利用数学知识解决实际问题,考查集合知识,比较基础.13.过点(1,2)且在两坐标轴上的截距相等的直线的方程为

参考答案:14.函数y=ax+1+1(a>0且a≠1)的图象必经过定点.参考答案:(﹣1,2)【考点】指数函数的单调性与特殊点.【分析】利用a0=1(a≠0)即可得出答案.【解答】解:令x+1=0,得x=﹣1,则y=a0+1=2,∴函数y=ax+1的图象过定点(﹣1,2).故答案为(﹣1,2).15.已知角的终边与函数决定的函数图象重合,的值为_____________.参考答案:

解析:在角的终边上取点16.已知f(x)在[﹣1,1]上既是奇函数又是减函数,则满足f(1﹣x)+f(3x﹣2)<0的x的取值范围是

.参考答案:【考点】奇偶性与单调性的综合.【分析】利用函数的奇偶性和单调性,将不等式进行转化,解不等式即可.【解答】解:∵函数y=f(x)在[﹣1,1]上是奇函数,∴不等式f(1﹣x)+f(3x﹣2)<0等价为f(1﹣x)<﹣f(3x﹣2)=f(2﹣3x).又函数在[﹣1,1]上单调递减,∴,解得<x≤1.即不等式成立的x的范围是.故答案为.17.函数的定义域是

.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知向量=(cosα,sinα),=(cosβ,sinβ),=(﹣1,0). (1)求向量的长度的最大值; (2)设α=,且⊥(),求cosβ的值. 参考答案:【考点】平面向量数量积的运算;向量的模;数量积判断两个平面向量的垂直关系. 【分析】(1)利用向量的运算法则求出,利用向量模的平方等于向量的平方求出的平方,利用三角函数的平方关系将其化简,利用三角函数的有界性求出最值. (2)利用向量垂直的充要条件列出方程,利用两角差的余弦公式化简得到的等式,求出值.【解答】解:(1)=(cosβ﹣1,sinβ),则 ||2=(cosβ﹣1)2+sin2β=2(1﹣cosβ). ∵﹣1≤cosβ≤1, ∴0≤||2≤4,即0≤||≤2. 当cosβ=﹣1时,有|b+c|=2, 所以向量的长度的最大值为2. (2)由(1)可得=(cosβ﹣1,sinβ), ()=cosαcosβ+sinαsinβ﹣cosα=cos(α﹣β)﹣cosα. ∵⊥(), ∴()=0,即cos(α﹣β)=cosα. 由α=,得cos(﹣β)=cos, 即β﹣=2kπ±(k∈Z), ∴β=2kπ+或β=2kπ,k∈Z,于是cosβ=0或cosβ=1. 【点评】本题考查向量模的性质:向量模的平方等于向量的平方、向量垂直的充要条件;三角函数的平方关系、三角函数的有界性、两角差的余弦公式. 19.已知向量.(1)求与的夹角的余弦值;(2)若向量与垂直,求的值.参考答案:(1);(2)【分析】(1)分别求出,,,再代入公式求余弦值;(2)由向量互相垂直,得到数量积为0,从而构造出关于的方程,再求的值.【详解】(1),,,∴.(2).若,则,解得.【点睛】本题考查向量数量积公式的应用及两向量垂直求参数的值,考查基本的运算求解能力.20.等差数列{an}的前n项和为Sn,数列{bn}是等比数列,满足,,,,.(1)求数列{an}和{bn}的通项公式;(2)令,求数列{cn}的前n项和Tn.参考答案:(1),;(2)【分析】(1)由是等差数列,,,可求出,由是等比数列,,,,可求出;(2)将和的通项公式代入,则,利用裂项相消求和法可求出.【详解】(1),,,解得.又,,.(2)由(1),得【点睛】本题考查了等差数列和等比数列的通项公式的求法,考查了用裂项相消求数列的前项和,属于中档题。21.某校从高二年级学生中随机抽取60名学生,将期中考试的政治成绩(均为整数)分成六段:后得到如下频率分布直方图.(1)根据频率分布直方图,分别求,众数,中位数。(2)估计该校高二年级学生期中考试政治成绩的平均分。(3)用分层抽样的方法在各分数段的学生中抽取一个容量为20的样本,则在[70,90)分数段抽取的人数是多少?参考答案:(1)众数为75中位数为;(2)平均分为71、(3)11.【分析】(1)先根据频率之和为1,可求出;再由频率最大的一组,得到众数;根据中位数两边的频率之和相等,可求出中位数;(2)由每组的中间值乘以该组的频率,再求和,即可得出平均值;(3)先由题意确定抽样比,进而可求出在分数段抽取的人数.【详解】解析(1)由题意可得,,解得;根据频率分布直方图可知:分数段的频率最高,因此众数为75;又由频率分布直方图可知:分数段的频率为,因为分数段的频率为,所以,中位数为.(2)由题中数据可得:该校高二年级学生政治成绩的平均分估计为:;(3)因为总体共60名学生,样本容量为20,因此抽样比为;又在分数段共有人,因此,在分数段抽取的人数是人.【点睛】本题主要考查由频率分布直方图求中位数、众数、平均数、以及分层抽样的问题,熟记相关概念与公式即可,属于常考题型.22.(14分)已知向量,满足,+=(﹣,3),﹣=(3,﹣1),=(m,3),(1)求向量,的夹角θ值;(2)当(3+)∥时,m的值.参考答案:考点: 平面向量数量积的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论