福建省清流一中2023年数学高一第二学期期末复习检测试题含解析_第1页
福建省清流一中2023年数学高一第二学期期末复习检测试题含解析_第2页
福建省清流一中2023年数学高一第二学期期末复习检测试题含解析_第3页
福建省清流一中2023年数学高一第二学期期末复习检测试题含解析_第4页
福建省清流一中2023年数学高一第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在平面直角坐标系中,已知四边形是平行四边形,,,则()A. B. C. D.2.如果点位于第四象限,则角是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角3.函数的部分图象如图,则()()A.0 B. C. D.64.若正项数列的前项和为,满足,则()A. B. C. D.5.利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③相等的角在直观图中仍然相等;④正方形的直观图是正方形.以上结论正确的是()A.①② B.① C.③④ D.①②③④6.已知,,则在方向上的投影为()A. B. C. D.7.在中,角所对的边分别为,若,,,则等于()A.4 B. C. D.8.设的内角所对边的长分别为,若,则角=()A. B.C. D.9.在△ABC中,AB=,AC=1,,△ABC的面积为,则()A.30° B.45° C.60° D.75°10.已知向量,且,则与的夹角为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在中,已知点在边上,,,则的长为____________.12.若关于的不等式有解,则实数的取值范围为________.13.若两个正实数满足,且不等式有解,则实数的取值范围是____________.14.已知锐角、满足,,则的值为______.15.已知数列满足:,则___________.16.若正四棱锥的所有棱长都相等,则该棱锥的侧棱与底面所成的角的大小为____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在一次人才招聘会上,有、两家公司分别开出了他们的工资标准:公司允诺第一个月工资为8000元,以后每年月工资比上一年月工资增加500元;公司允诺第一年月工资也为8000元,以后每年月工资在上一年的月工资基础上递增,设某人年初被、两家公司同时录取,试问:(1)若该人分别在公司或公司连续工作年,则他在第年的月工资分别是多少;(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不计其他因素),该人应该选择哪家公司,为什么?18.某校从高一年级学生中随机抽取60名学生,将期中考试的物理成绩(均为整数)分成六段:,,,…,后得到如图频率分布直方图.(1)根据频率分布直方图,估计众数和中位数;(2)用分层抽样的方法从的学生中抽取一个容量为5的样本,从这五人中任选两人参加补考,求这两人的分数至少一人落在的概率.19.已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求f(x)的单调递增区间.20.已知点、、(),且.(1)求函数的解析式;(2)如果当时,两个函数与的图象有两个交点,求的取值范围.21.已知过点且斜率为的直线与圆:交于,两点.(1)求斜率的取值范围;(2)为坐标原点,求证:直线与的斜率之和为定值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】因为四边形是平行四边形,所以,所以,故选D.考点:1、平面向量的加法运算;2、平面向量数量积的坐标运算.2、C【解析】

由点位于第四象限列不等式,即可判断的正负,问题得解.【详解】因为点位于第四象限所以,所以所以角是第三象限角故选C【点睛】本题主要考查了点的坐标与点的位置的关系,还考查了等价转化思想及三角函数值的正负与角的终边的关系,属于基础题.3、D【解析】

先利用正切函数求出A,B两点的坐标,进而求出与的坐标,再代入平面向量数量积的运算公式即可求解.【详解】因为y=tan(x)=0⇒xkπ⇒x=4k+2,由图得x=2;故A(2,0)由y=tan(x)=1⇒xk⇒x=4k+3,由图得x=3,故B(3,1)所以(5,1),(1,1).∴()5×1+1×1=1.故选D.【点睛】本题主要考查平面向量数量积的坐标运算,考查了利用正切函数值求角的运算,解决本题的关键在于求出A,B两点的坐标,属于基础题.4、A【解析】

利用,化简,即可得到,令,所以,,令,所以原式为数列的前1000项和,求和即可得到答案。【详解】当时,解得,由于为正项数列,故,由,所以,由,可得①,所以②②—①可得,化简可得由于,所以,即,故为首项为1,公差为2的等差数列,则,令,所以,令所以原式故答案选A【点睛】本题主要考查数列通项公式与前项和的关系,以及利用裂项求数列的和,解题的关键是利用,求出数列的通项公式,有一定的综合性。5、A【解析】

由直观图的画法和相关性质,逐一进行判断即可.【详解】斜二侧画法会使直观图中的角度不同,也会使得沿垂直于水平线方向的长度与原图不同,而多边形的边数不会改变,同时平行直线之间的位置关系依旧保持平行,故:①②正确,③和④不对,因为角度会发生改变.故选:A.【点睛】本题考查斜二侧画法的相关性质,注意角度是发生改变的,这是易错点.6、A【解析】在方向上的投影为,选A.7、B【解析】

根据正弦定理,代入数据即可。【详解】由正弦定理,得:,即,即:解得:选B。【点睛】此题考查正弦定理:,代入数据即可,属于基础题目。8、B【解析】

试题分析:,由正弦定理可得即;因为,所以,所以,而,所以,故选B.考点:1.正弦定理;2.余弦定理.9、C【解析】

试题分析:由三角形面积公式得,,所以.显然三角形为直角三角形,且,所以.考点:解三角形.10、D【解析】

直接由平面向量的数量积公式,即可得到本题答案.【详解】设与的夹角为,由,,,所以.故选:D【点睛】本题主要考查平面向量的数量积公式.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由诱导公式可知,在中用余弦定理可得BD的长。【详解】由题得,,在中,可得,又,代入得,解得.故答案为:【点睛】本题考查余弦定理和诱导公式,是基础题。12、【解析】

利用判别式可求实数的取值范围.【详解】不等式有解等价于有解,所以,故或,填.【点睛】本题考查一元二次不等式有解问题,属于基础题.13、【解析】试题分析:因为不等式有解,所以,因为,且,所以,当且仅当,即时,等号是成立的,所以,所以,即,解得或.考点:不等式的有解问题和基本不等式的求最值.【方法点晴】本题主要考查了基本不等式在最值中的应用,不等式的有解问题,在应用基本不等式求解最值时,呀注意“一正、二定、三相等”的判断,运用基本不等式解题的关键是寻找和为定值或是积为定值,难点在于如何合理正确的构造出定值,对于不等式的有解问题一般选用参数分离法,转化为函数的最值或借助数形结合法求解,属于中档试题.14、【解析】

计算出角的取值范围,利用同角三角函数的平方关系计算出的值和的值,然后利用两角差的余弦公式可计算出的值.【详解】由题意可知,,,,则,.因此,.故答案为.【点睛】本题考查利用两角差的余弦公式求值,同时也考查了同角三角函数的平方关系求值,解题时要明确所求角与已知角之间的关系,合理利用公式是解题的关键,考查运算求解能力,属于中等题.15、0【解析】

先由条件得,然后【详解】因为所以因为,且所以,即故答案为:0【点睛】本题考查的是数列的基础知识,较简单.16、【解析】

先作出线面角,再利用三角函数求解即可.【详解】如图,设正四棱锥的棱长为1,作在底面的射影,则为与底面所成角,为正方形的中心,,,,故答案为.【点睛】本题考查线面角,考查学生的计算能力,作出线面角是关键.属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)公司:;公司:;(2)公司十年月工资总和为,公司十年月工资总和为,选公司;【解析】

(1)易得在两家公司每年的工资分别成等差和等比数列再求解即可.(2)根据(1)中的通项公式求解前10年的工资和比较大小即可.【详解】(1)易得在公司的工资成公差为500,首项为8000的等差数列,故在公司第年的月工资为.在公司的工资成公比为,首项为8000的等比数列.故在公司第年的月工资为.(2)由(1)得,在公司十年月工资总和在公司十年月工资总和.因为.故选公司.【点睛】本题主要考查了等差等比数列的实际应用题,需要根据题意找出首项公比公差再求和等.属于基础题型.18、(1)众数为75,中位数为73.33;(2).【解析】

(1)由频率分布直方图能求出a=0.1.由此能求出众数和中位数;(2)用分层抽样的方法从[40,60)的学生中抽取一个容量为5的样本,从这五人中任选两人参加补考,基本事件总数,这两人的分数至少一人落在[50,60)包含的基本事件个数,由此能求出这两人的分数至少一人落在[50,60)的概率.【详解】(1)由频率分布直方图得:,

解得,

所以众数为:,的频率为,

的频率为,

中位数为:.(2)用分层抽样的方法从的学生中抽取一个容量为5的样本,

的频率为0.1,的频率为0.15,

中抽到人,中抽取人,从这五人中任选两人参加补考,

基本事件总数,这两人的分数至少一人落在包含的基本事件个数,所以这两人的分数至少一人落在的概率.【点睛】在求解有关古典概型概率的问题时,首先求出样本空间中基本事件的总数,其次求出概率事件中含有多少个基本事件,然后根据公式求得概率19、(Ⅰ)(Ⅱ)().【解析】试题分析:(Ⅰ)运用两角和的正弦公式对f(x)化简整理,由周期公式求ω的值;(Ⅱ)根据函数y=sinx的单调递增区间对应求解即可.试题解析:(Ⅰ)因为,所以的最小正周期.依题意,,解得.(Ⅱ)由(Ⅰ)知.函数的单调递增区间为().由,得.所以的单调递增区间为().【考点】两角和的正弦公式、周期公式、三角函数的单调性.【名师点睛】三角函数的单调性:1.三角函数单调区间的确定,一般先将函数式化为基本三角函数标准式,然后通过同解变形或利用数形结合方法求解.关于复合函数的单调性的求法;2.利用三角函数的单调性比较两个同名三角函数值的大小,必须先看两角是否同属于这一函数的同一单调区间内,不属于的,可先化至同一单调区间内.若不是同名三角函数,则应考虑化为同名三角函数或用差值法(例如与0比较,与1比较等)求解.20、(1);(2)【解析】

(1)根据向量坐标以及向量的数量积公式求出,利用辅助角公式即可求的解析式;(2),求出的范围,令,,则画函数图象,由两个函数与的图象有两个交点,建立不等关系即可求的值.【详解】解:(1),,,,,则,即;(2)因为,,令,,则画函数图象如下所示:,要使两个函数与的图象有两个交点,则,,解得解得.【点睛】本题主要考查三角函数的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论