2023年湖南省重点中学数学高一第二学期期末复习检测模拟试题含解析_第1页
2023年湖南省重点中学数学高一第二学期期末复习检测模拟试题含解析_第2页
2023年湖南省重点中学数学高一第二学期期末复习检测模拟试题含解析_第3页
2023年湖南省重点中学数学高一第二学期期末复习检测模拟试题含解析_第4页
2023年湖南省重点中学数学高一第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在一个锥体中,作平行于底面的截面,若这个截面面积与底面面积之比为1∶3,则锥体被截面所分成的两部分的体积之比为()A.1∶ B.1∶9 C.1∶ D.1∶2.已知为不同的平面,为不同的直线则下列选项正确的是()A.若,则 B.若,则C.若,则 D.若,则3.在中,分别为角的对边),则的形状是()A.直角三角形 B.等腰三角形或直角三角形C.等腰直角三角形 D.正三角形4.为了了解某同学的数学学习情况,对他的6次数学测试成绩进行统计,作出的茎叶图如图所示,则下列关于该同学数学成绩的说法正确的是()A.中位数为83 B.众数为85 C.平均数为85 D.方差为195.如图是一个边长为3的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷1089个点,其中落入白色部分的有484个点,据此可估计黑色部分的面积为()A.4 B.5 C.8 D.96.已知函数则的是A. B. C. D.7.下列说法不正确的是()A.圆柱的侧面展开图是一个矩形B.圆锥过轴的截面是一个等腰三角形C.平行于圆台底面的平面截圆台,截面是圆面D.直角三角形绕它的一边旋转一周形成的曲面围成的几何体是圆锥8.圆心为且过原点的圆的方程是()A.B.C.D.9.在ΔABC中,内角A,B,C所对的边分别为a,b,c,若c=2bsinC,B≤πA.π6 B.π4 C.π10.如果,且,那么下列不等式成立的是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在Rt△ABC中,∠B=90°,BC=6,AB=8,点M为△ABC内切圆的圆心,过点M作动直线l与线段AB,AC都相交,将△ABC沿动直线l翻折,使翻折后的点A在平面BCM上的射影P落在直线BC上,点A在直线l上的射影为Q,则的最小值为_____.12.已知实数满足条件,则的最大值是________.13.已知向量,则与的夹角是_________.14.过点作直线与圆相交,则在弦长为整数的所有直线中,等可能的任取一条直线,则弦长长度不超过14的概率为______________.15.设,则的值是____.16.设a>1,b>1.若关于x,y的方程组无解,则的取值范围是.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某机构通过对某企业今年的生产经营情况的调查,得到每月利润(单位:万元)与相应月份数的部分数据如表:14712229244241196(1)根据如表数据,请从下列三个函数中选取一个恰当的函数描述与的变化关系,并说明理由,,,;(2)利用(1)中选择的函数,估计月利润最大的是第几个月,并求出该月的利润.18.为了对某课题进行研究,用分层抽样方法从三所高校,,的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人).高校相关人员抽取人数A18B362C54(1)求,;(2)若从高校,抽取的人中选2人做专题发言,求这2人都来自高校的概率.19.有同一型号的汽车100辆,为了解这种汽车每耗油所行路程的情况,现从中随机地抽出10辆,在同一条件下进行耗油所行路程的试验,得到如下样本数据(单位:km):13.7,12.7,14.4,13.8,13.3,12.5,13.5,13.6,13.1,13.4,并分组如下:(1)完成上面的频率分布表;(2)根据上表,在坐标系中画出频率分布直方图.20.已知动点P与两个定点O(0,0),A(3,0)的距离的比值为2,点P的轨迹为曲线C.(1)求曲线C的轨迹方程(2)过点(﹣1,0)作直线与曲线C交于A,B两点,设点M坐标为(4,0),求△ABM面积的最大值.21.已知数列满足:.(1)求证:数列为等差数列,并求;(2)记,求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】解:因为在一个锥体中,作平行于底面的截面,若这个截面面积与底面面积之比为1∶3,那么分为的两个锥体的体积比为1:,因此锥体被截面所分成的两部分的体积之比为.1∶2、C【解析】

通过对ABCD逐一判断,利用点线面的位置关系即可得到答案.【详解】对于A选项,有可能异面,故错误;对于B选项,可能相交或异面,故错误;对于C选项,,显然故正确;对于D选项,也有可能,故错误.所以答案选C.【点睛】本题主要考查直线与平面的位置关系,意在考查学生的空间想象能力,难度不大.3、A【解析】

根据正弦定理得到,化简得到,得到,得到答案.【详解】,则,即,即,,故,.故选:.【点睛】本题考查了正弦定理判断三角形形状,意在考查学生的计算能力和转化能力.4、C【解析】试题分析:A选项,中位数是84;B选项,众数是出现最多的数,故是83;C选项,平均数是85,正确;D选项,方差是,错误.考点:茎叶图的识别‚相关量的定义5、B【解析】

由几何概型中的随机模拟试验可得:,将正方形面积代入运算即可.【详解】由题意在正方形区域内随机投掷1089个点,其中落入白色部分的有484个点,则其中落入黑色部分的有605个点,由随机模拟试验可得:,又,可得,故选B.【点睛】本题主要考查几何概型概率公式以及模拟实验的基本应用,属于简单题,求不规则图形的面积的主要方法就是利用模拟实验,列出未知面积与已知面积之间的方程求解.6、D【解析】

根据自变量的范围确定表达式,从里往外一步步计算即可求出.【详解】因为,所以,因为,所以==3.【点睛】主要考查了分段函数求值问题,以及对数的运算,属于基础题.对于分段函数求值问题,一定要注意根据自变量的范围,选择正确的表达式代入求值.7、D【解析】

根据旋转体的定义与性质,对选项中的命题分析、判断正误即可.【详解】A.圆柱的侧面展开图是一个矩形,正确;B.∵同一个圆锥的母线长相等,∴圆锥过轴的截面是一个等腰三角形,正确;C.根据平行于圆台底面的平面截圆台截面的性质可知:截面是圆面正确;D.直角三角形绕它的一条直角边旋转一周形成的曲面围成的几何体是圆锥,而直角三角形绕它的斜边旋转一周形成的曲面围成的几何体是两个对底面的两个圆锥,因此D不正确.故选:D.【点睛】本题考查了命题的真假判断,解题的关键是理解旋转体的定义与性质的应用问题,属于基础题.8、D【解析】试题分析:设圆的方程为,且圆过原点,即,得,所以圆的方程为.故选D.考点:圆的一般方程.9、A【解析】

利用正弦定理可求得sinB=12【详解】因为c=2bsinC,所以sinC=2sinBsinC,所以sinB=1【点睛】本题主要考查正弦定理的运用,难度较小.10、D【解析】

由,且,可得.再利用不等式的基本性质即可得出,.【详解】,且,.,,因此.故选:.【点睛】本题考查了不等式的基本性质,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、825【解析】

以AB,BC所在直线为坐标轴建立平面直角坐标系,设直线l的斜率为k,用k表示出|PQ|,|AQ|,利用基本不等式得出答案.【详解】过点M作△ABC的三边的垂线,设⊙M的半径为r,则r2,以AB,BC所在直线为坐标轴建立平面直角坐标系,如图所示,则M(2,2),A(0,8),因为A在平面BCM的射影在直线BC上,所以直线l必存在斜率,过A作AQ⊥l,垂足为Q,交直线BC于P,设直线l的方程为:y=k(x﹣2)+2,则|AQ|,又直线AQ的方程为:yx+8,则P(8k,0),所以|AP|8,所以|PQ|=|AP|﹣|AQ|=8,所以,①当k>﹣3时,4(k+3)25≥825,当且仅当4(k+3),即k3时取等号;②当k<﹣3时,则4(k+3)23≥823,当且仅当﹣4(k+3),即k3时取等号.故答案为:825【点睛】本题考查了考查空间距离的计算,考查基本不等式的运算,意在考查学生对这些知识的理解掌握水平.12、8【解析】

画出满足约束条件的可行域,利用目标函数的几何意义求解最大值即可.【详解】实数,满足条件的可行域如下图所示:将目标函数变形为:,则要求的最大值,即使直线的截距最大,由图可知,直线过点时截距最大,,故答案为:8.【点睛】本题考查线性规划的简单应用,解题关键是明确目标函数的几何意义.13、【解析】

利用向量的数量积直接求出向量的夹角即可.【详解】由题知,,因为,所以与的夹角为.故答案为:.【点睛】本题考查了利用向量的数量积求解向量的夹角,属于基础题.14、【解析】

根据圆的性质可求得最长弦和最短弦的长度,从而得到所有弦长为整数的直线条数,从中找到长度不超过的直线条数,根据古典概型求得结果.【详解】由题意可知,最长弦为圆的直径:在圆内部且圆心到的距离为最短弦长为:弦长为整数的直线的条数有:条其中长度不超过的条数有:条所求概率:本题正确结果:【点睛】本题考查古典概型概率问题的求解,涉及到过圆内一点的最长弦和最短弦的长度的求解;易错点是忽略圆的对称性,造成在求解弦长为整数的直线的条数时出现丢根的情况.15、【解析】

根据二倍角公式得出,再根据诱导公式即可得解.【详解】解:由题意知:故,即.故答案为.【点睛】本题考查了二倍角公式和诱导公式的应用,属于基础题.16、【解析】试题分析:方程组无解等价于直线与直线平行,所以且.又,为正数,所以(),即取值范围是.考点:方程组的思想以及基本不等式的应用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),理由见解析;(2)第5个月,利润最大为245.【解析】

(1)根据题中数据,即可直接判断出结果;(2)将题中,代入,求出参数,根据二次函数的性质,以及自变量的范围,即可得出结果.【详解】(1)由题目中的数据知,描述每月利润(单位:万元)与相应月份数的变化关系函数不可能是常数函数,也不是单调函数;所以,应选取二次函数进行描述;(2)将,代入,解得,,∴,,,,∴,万元.【点睛】本题主要考查二次函数的应用,熟记二次函数的性质即可,属于常考题型.18、(1),(2)【解析】

(1)根据分层抽样的概念,可得,求解即可;(2)分别记从高校抽取的2人为,,从高校抽取的3人为,,,先列出从5人中选2人作专题发言的基本事件,再列出2人都来自高校的基本事件,进而求出概率【详解】(1)由题意可得,所以,(2)记从高校抽取的2人为,,从高校抽取的3人为,,,则从高校,抽取的5人中选2人作专题发言的基本事件有,,,,,,,,,共10种设选中的2人都来自高校的事件为,则包含的基本事件有,,共3种因此,故选中的2人都来自高校的概率为【点睛】本题考查分层抽样,考查古典概型,属于基础题19、(1)见解析;(2)见解析【解析】

(1)通过所给数据算出频数和频率值,并填入表格中;(2)计算每组数中的频率除以组距的值,再画出直方图.【详解】(1)频率分布表如下:分组频数频率[12.45,12.95)20.2[12.95,13.45)30.3[13.45,13.95)40.4[13.95,14.45)10.1合计101.0(2)频率分布直方图如图所示:【点睛】本题考查频率分布表和频率分布直方图的简单应用,考查基本的数据处理能力.20、(1);(2)2【解析】

(1)设点,运用两点的距离公式,化简整理可得所求轨迹方程;(2)由题意可知,直线的斜率存在,设直线方程为,求得到直线的距离,以及弦长公式,和三角形的面积公式,运用换元法和二次函数的最值可得所求.【详解】(1)设点,,即,,即,曲线的方程为.(2)由题意可知,直线的斜率存在,设直线方程为,由(1)可知,点是圆的圆心,点到直线的距离为,由得,即,又,所以,令,所以,,则,所以,当,即,此时,符合题意,即时取等号,所以面积的最大值为.【点睛】本题主要考查了轨迹方程的求法,直线和圆的位置关系,以及弦长

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论