七年级数学几何图形初步专题练习(解析版)_第1页
七年级数学几何图形初步专题练习(解析版)_第2页
七年级数学几何图形初步专题练习(解析版)_第3页
七年级数学几何图形初步专题练习(解析版)_第4页
七年级数学几何图形初步专题练习(解析版)_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、初一数学几何模型部分解答题压轴题精选(难)1.如图1,CE平分∠ACD,AE平分∠BAC,且∠EAC+∠ACE=90°.(1)请判断AB与CD的位置关系,并说明理由;(2)如图2,若∠E=90°且AB与CD的位置关系保持不变,当直角顶点E移动时,写出∠BAE与∠ECD的数量关系,并说明理由;(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点,且AB与CD的位置关系保持不变,当点Q在射线CD上运动时(不与点C重合),∠PQD,∠APQ与∠BAC有何数量关系?写出结论,并说明理由.【答案】(1)AB//

CE平分,AE平分,;(2),理由如下:如图,延长AE交CD于点F,则由三角形的外角性质得:;(3),理由如下:,即由三角形的外角性质得:又,即即.【解析】【分析】(1)根据角平分线的定义、平行线的判定即可得;(2)根据平行线的性质(两直线平行,内错角相等)、三角形的外角性质即可得;(3)根据平行线的性质(两直线平行,同旁内角互补)、三角形的外角性质、邻补角的定义即可得.2.如图①,△ABC中,BD平分∠ABC,且与△ABC的外角∠ACE的角平分线交于点D.(1)若,,求∠D的度数;(2)若把∠A截去,得到四边形MNCB,如图②,猜想∠D、∠M、∠N的关系,并说明理由.【答案】(1)解:∵BD平分∠ABC,∴∠CBD=12∠ABC=1∵CD平分△ABC的外角,∴∠DCA=12(180°-∠ACB)=1∴∠D=180°-∠DBC-∠DCB=180°-37.5°-67.5°-45°=30°.(2)解:猜想:∠D=

12∵∠M+∠N+∠CBM+∠NCB=360°,∴∠D=180°-12∠CBM-∠NCB-1

=180°-12(360°-∠NCB-∠M-∠N)-∠NCB-1

=180°-180°+12∠NCB+12∠M+12

=12∠M+12∠N-12∠NCB-1

或写成【解析】【分析】(1)根据角平分线的定义可得∠DBC=37.5°,根据邻补角定义以及角平分线定义求得∠DCA的度数为67.5°,最后根据三角形内角和定理即可求得∠D的度数;(2)由四边形内角和与角平分线性质即可求解.3.如图,已知CD∥EF,A,B分别是CD和EF上一点,BC平分∠ABE,BD平分∠ABF(1)证明:BD⊥BC;(2)如图,若G是BF上一点,且∠BAG=50°,作∠DAG的平分线交BD于点P,求∠APD的度数:(3)如图,过A作AN⊥EF于点N,作AQ∥BC交EF于Q,AP平分∠BAN交EF于P,直接写出∠PAQ=________.【答案】(1)证明:∵BC平分∠ABE,BD平分∠ABF∴∠ABC=12∠ABE,∠ABD=1∴∠ABC+∠ABD=12(∠ABE+∠ABF)=1∴BD⊥BC(2)解:∵CD∥EFBD平分∠ABF∴∠ADP=∠DBF=12又AP平分∠DAG,∠BAG=50°∴∠DAP=12∴∠APD=180°-∠DAP-∠ADP=180°-12∠DAG-1=180°-12(∠DAB-∠BAG)-1=180°-12∠DAB+12×50°-=180°-12=180°-12=115°(3)45°【解析】【解答】(3)解:如图,∵AQ∥BC∴∠1=∠4,∠2+∠3+∠4=180°,∵BC平分∠ABE,∴∠1=∠2=∠4,∴12又∵CD∥EF,AN⊥EF,AP平分∠BAN∴∠PAN=12∴∠PAQ=∠PAN+∠NAQ=12=45°-12=135°-(12=135°-90°=45°.【分析】(1)根据角平分线和平角的定义可得∠CBD=90°,即可得出结论;(2)根据平行线的性质以及角平分线的定义可得∠ADP=∠DBF=12∠ABF,∠DAB+∠ABF=180°,∠DAP=12∠DAG,然后根据出三角形内角和即可求出∠APD的度数;(3)根据平行线的性质以及角平分线的定义可得∠1=∠2=∠4,∠2+∠3+∠4=180°,即12∠3+∠4=90°,根据垂直和平行线的性质以及角平分线的定义可得∠PAN=14.已知,如图,在四边形ABCD中,AB//CD,延长BC至点E,连接AE交CD于点F,使∠BAC=(1)求证:∠BAF=(2)求证:AD//BE;(3)若BF平分∠ABC,请写出∠AFB与∠CAF的数量关系________.(【答案】(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAF=∠DAE+∠CAF,∴∠BAF=∠CAD;(2)证明:∵∠BAC=∠DAF,∠ACB=∠CFE=∠AFD,∴∠B=∠D,∵AB∥CD,∴∠B+∠BCD=180°,∴∠D+∠BCD=180°,∴AD∥BE;(3)2∠AFB+∠CAF=180°【解析】【解答】解:(3)如图2,∵AD∥BE,∴∠E=∠1=∠2,∵BF平分∠ABC,∴∠3=∠4,∵∠AFB是△BEF的外角,∴∠AFB=∠4+∠E=∠4+∠1,∴∠AFB=3+∠2,又∵AD∥BC,∴∠ABC+∠BAD=180°,∴∠3+∠4+∠1+∠CAF+∠2=180°,即2∠AFB+∠CAF=180°.故答案为:2∠AFB+∠CAF=180°.【分析】(1)根据∠BAC=∠DAE,运用等式性质即可得出∠BAC+∠CAF=∠DAE+∠CAF,进而得到∠BAF=∠CAD;(2)根据∠BAC=∠DAF,∠ACB=∠CFE=∠AFD,可得∠B=∠D,最后根据∠B+∠BCD=180°,可得∠D+∠BCD=180°,进而判定AD∥BE;(3)根据AD∥BE,可得∠E=∠1=∠2,再根据BF平分∠ABC,可得∠3=∠4,根据∠AFB是△BEF的外角,得出∠AFB=∠4+∠E=∠4+∠1,即∠AFB=3+∠2,最后根据AD∥BC,得到∠ABC+∠BAD=180°,进而得到2∠AFB+∠CAF=180°.5.如图,已知AM//BN,∠A=600.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN.(1)求∠ABN的度数(2)当点P运动时,∠CBD的度数是否随之发生变化?若不变化,请求出它的度数。若变化,请写出变化规律.(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数。【答案】(1)证明:∵AM//BN∴∠A+∠ABN=180°∵∠A=60°∴∠ABN=180°−∠A=180°−60=120°(2)解:如图,没有变化。∵CB平分∠ABP,

BD平分∠PBN∴∠1=12∠ABP,

∠2=1∴∠CBD=∠1+∠2=∠ABP+∠PBN)=12×1200=60(3)解:如图,∵AM//BN∴∠ACB=∠CBN∵∠ACB=∠ABD∴∠CBN=∠ABD∴∠CBN−∠CBD=∠ABD−∠CBD即∠1=∠4又∵CB平分∠ABP,

BD平分∠PBN∴∠1=∠2

∠3=∠4∴∠1=∠2=∠3=∠4=120°÷4=30°即∠ABC=30°【解析】【分析】(1)根据两直线平行,同旁内角互补即可求出答案;(2)根据角平分线的性质以及角度相加减即可得证;(3)根据两直线平行,同旁内角互补以及已知条件得到∠CBN=∠ABD,根据角度的相加减得到∠1=∠4,再根据角平分线的性质得到∠1=∠2=∠3=∠4,最后根据∠ABN=120°

即可得到答案.6.己知AB∥CD,点E在直线AB,CD之间。(1)如图①,试说明:∠AEC=∠BAE+∠ECD;(2)若AH平分∠BAE,将线段CE沿射线CD平移至FG。①如图②,若∠AEC=90°,FH平分∠DFG,求∠AHF的度数;②如图③,若FH平分∠CFG,试判断∠AHF与∠AEC的数量关系并说明理由。【答案】(1)解:如图①【法1】过点E作直线EK∥AB因为AB∥CD,所以EK∥CD所以∠BAE=∠AEK,∠DCE=∠CEK所以∠AEC=∠AEK+∠CEK=∠BAE+∠ECD【法2】连接AC,则∠BAC+∠DCA=180°则∠BAC+∠DCA=180°即∠BAE+∠EAC+∠ECA+∠ECD=180°所以∠BAE+∠ECD=180°-(∠EAC+∠ECA)=∠AEC即∠AEC=∠BAE+∠ECD(2)解:①【法1】因为AH平分∠BAE,FH平分∠DFG,所以∠BAH=∠EAH,∠DFH=∠GFH又因为FG∥CE,所以∠GFD=∠ECD由(1)知,∠AHF=∠BAH+∠DFH=12∠BAE+12∠DFG=12=12(∠BAE+∠DCE)=12∠AEC=【法2】因为AH平分∠BAE,所以∠BAH=∠EAH因为HE平分∠DFG,设∠GFH=∠DFH=x又CE∥FG,所以∠ECD=∠GFD=2x又∠AEC=∠BAE+∠ECD,∠AEC=90°所以∠BAH=∠EAH=45°-x由(1)知,易证∠AHF=∠BAH+∠DFH=45°-x+x=45°②【法1】因为AH平分∠BAE,FH平分∠CFG,所以∠BAH=∠EAH,∠CFH=∠GFH又因为FG∥CE,所以∠GFD=∠ECD由(1)知,∠AHF=∠BAH+∠DFH=12∠BAE+∠GFH+∠GFD=12∠BAE+=12∠BAE+12∠(180°-∠GFD)+∠GFD=90°+=90°+12(∠BAE+∠ECD)=90+1【法2】设∠BAH=∠EAH=x,∠CED=y,则∠GFD=y因为HF平分∠CFG,所以∠GFH=∠CFH=90°-y由(1)知∠AEC=∠BAE+∠ECD=2x+y∠AHF=∠BAH+∠DFH=∠BAH+∠DFG+∠GFH=x+y+90°-y2=x+y2+90°=12所以∠AHF=12【解析】【分析】(1)过点E作直线EK∥AB,根据平行线的性质即可求解;也可连接AC,根据平行线的性质和三角形内角和定理求解;(2)①根据(1)的结论可得∠AHF=∠BAH+∠DFH,再结合平行线的性质和角平分线的定义表示出∠AHF,即可求解;也可设∠GFH=∠DFH=x,则∠BAH=45°-x,再根据∠AHF=∠BAH+∠DFH求解;②根据(1)的结论可得∠AHF=∠BAH+∠DFH,结合角平分线的定义将∠AHF用∠AEC表示出来;也可设∠BAH=∠EAH=x,∠CED=∠GFD=y,则有∠AEC=∠BAE+∠ECD=2x+y,再结合∠AHF=∠BAH+∠DFH即可求解.7.课题学习:平行线的“等角转化功能.(1)问题情景:如图1,已知点A是BC外一点,连接AB、AC,求的度数.

天天同学看过图形后立即想出:,请你补全他的推理过程.解:(1)如图1,过点A作,∴________,________.又∵,∴.解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”功能,将,,“凑”在一起,得出角之间的关系,使问题得以解决.(2)问题迁移:如图2,,求的度数.(3)方法运用:如图3,,点C在D的右侧,,点B在A的左侧,,BE平分,DE平分,BE、DE所在的直线交于点E,点E在AB与CD两条平行线之间,求的度数.【答案】(1)∠EAB;∠DAC(2)解:过C作CF∥AB,∵AB∥DE,∴CF∥DE∥AB,∴∠D=∠FCD,∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°,(3)解:如图3,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE=12∠ABC=30°,∠CDE=1∴∠BED=∠BEF+∠DEF=30°+35°=65°.【解析】【解答】解:(1)根据平行线性质可得:因为,所以∠EAB,∠DAC;【分析】(1)根据平行线性质“两直线平行,内错角相等”可得∠B+∠BCD+∠D∠BCF+∠BCD+∠DCF;(2)过C作CF∥AB,根据平行线性质可得;(3)如图3,过点E作EF∥AB,根据平行线性质和角平分线定义可得∠ABE=12∠ABC=30°,∠CDE=18.如图1,已知∠MON=60°,A、B两点同时从点O出发,点A以每秒x个单位长度沿射线ON匀速运动,点B以每秒y个单位长度沿射线OM匀速运动.(1)若运动1s时,点A运动的路程比点B运动路程的2倍还多1个单位长度,运动3s时,点A、点B的运动路程之和为12个单位长度,则x=________,y=________;(2)如图2,点C为△ABO三条内角平分线交点,连接BC、AC,在点A、B的运动过程中,∠ACB的度数是否发生变化?若不发生变化,求其值;若发生变化,请说明理由;(3)如图3,在(2)的条件下,连接OC并延长,与∠ABM的角平分线交于点P,与AB交于点Q.①试说明∠PBQ=∠ACQ;②在△BCP中,如果有一个角是另一个角的2倍,请写出∠BAO的度数.【答案】(1)3;1(2)解:的度数不发生变化,其值求解如下:由三角形的内角和定理得点C为三条内角平分线交点,即AC平分,BC平分由三角形的内角和定理得(3)解:①由三角形的外角性质得:点C为三条内角平分线交点,即AC平分,OC平分又是的角平分线;②是的角平分线,BC平分由三角形的外角性质得:则在中,如果有一个角是另一个角的2倍,那么一定是.【解析】【解答】(1)由题意得:化简得解得{故答案为:3,1;【分析】(1)根据“路程=速度脳时间”建立一个关于x、y的二元一次方程组,求解即可得;(2)先根据三角形的内角和定理可得,再根据角平分线的定义可得,然后根据三角形的内角和定理即可得;(3)①先根据三角形的外角性质可得,再根据角平行线的定义即可得;②先根据角平分线的定义、平角的定义得出,再根据三角形的外角性质得出,从而得出,然后根据直角三角形的性质得出,最后根据角的和差、角平分线的定义即可得.9.如(图1),在平面直角坐标系中,,,,且满足,线段AB交y轴于F点.(1)填空:a=________,b=________;(2)点D为y轴正半轴上一点,若ED//AB,,且AM,DM分别平分,如(图2),求的度数;(3)求点F的坐标;(4)如(图3),在y轴上是否存在一点Q,使三角形ABQ的面积和三角形ABC的面积相等?若存在,求出Q点坐标,若不存在,说明理由.【答案】(1)-3;3(2)解:∵AB∥DE,∴∠ODE+∠DFB=180°,∵,∴∠DFB=∠AFO=180°-140°=40°,∴∠FAO=50°,∵AM,DM分别平分,∴∠OAN=12∠FAO=25°,∠NDM=12∠ODE=70°,∴∠DNM=∠ANO=90°-25°=65°,∴∠AMD=180°−∠DNM-∠NDM=45°(3)解:连结OB,如图,设F(0,t),∵△AOF的面积+△BOF的面积=△AOB的面积,∴12×3×t+12×t×3=12×3×3,解得t=32(4)解:存在,∵,∴△ABC的面积=,设Q(0,y),∵△ABQ的三角形=△AQF的面积+△BQF的面积,∴12•|y−32|•3+12•|y−32|•3=21【解析】【解答】解:(1)∵(a+b)2+|b-a-6|=0,∴a+b=0,b-a-6=0,∴a=−3,b=3,故答案为:-3,3;【分析】(1)根据非负数的性质得a+b=0,b-a-6=0,然后解方程组求出a和b即可得到点A和B的坐标;(2)由AB∥DE可知∠ODE+∠DFB=180°,得到∠DFB=∠AFO=180°-140°=40°,所以∠FAO=50°,再根据角平分线定义得∠OAN=12∠FAO=25°,∠NDM=12∠ODE=70°,得到∠DNM=∠ANO=90°-25°=65°,然后根据三角形内角和定理得∠AMD=180°−∠DNM-∠NDM=45°;(3)①连结OB,如图3,设F(0,t),根据△AOF的面积+△BOF的面积=△AOB的面积得到12×3×t+12×t×3=12×3×3,解得t=32,则可得到F点坐标为(0,32);(4)先计算△ABC的面积=212,利用△ABQ的三角形=△AQF的面积+△BQF的面积得到1210.

(1)①如图1,已知,,可得________.②如图2,在①的条件下,如果CM平分,则________.③如图3,在①、②的条件下,如果,则________.(2)尝试解决下面问题:已知如图4,,,CN是的平分线,,求的度数.【答案】(1)60°;30°;60°(2)解:∵,∴,∵,∴.∵CN是的平分线,∴∵,∴.【解析】【解答】解:(1)①由两直线平行,内错角相等得到∠BCD=60°;②如果CM平分,则=30°;③如果,则90°-60°.【分析】(1)①根据两直线平行,内错角相等即可求解;②根据角平分线的定义求解即可;③根据互余的两个角的和等于90°,计算即可;(2)先根据两直线平行,同旁内角互补和角平分线的定义求出∠BCN的度数,再利用互余的两个角的和等于90°即可求出.11.已知直线.(1)如图1,直接写出,和之间的数量关系.(2)如图2,BF,DF分别平分,,那么和有怎样的数量关系?请说明理由.(3)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论