




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十九章
一次函数综合专题讲解专题目录1.由一次函数图象的变换(平移、对称)求解析式;2.一次函数与坐标轴围成的三角形.课前热身1.y=-x+2与x轴的交点坐标是______,与y轴的交点坐标是_____2.点(-1,3)关于x轴对称的点是_______,关于y轴对称的点是____3.函数y=3x-2与函数y=2x+1的交点坐标______.(2,0)(0,2)(-1,-3)(3,7)(1,3)专题一:由一次函数图象的变换求解析式一、由一次函数图象的变换求解析式1.上下平移——教材P91例2(1)直线y=kx+b向上平移m(m>0)个单位长度得到直线____________y=kx+b+m直线y=kx+b向下平移m(m>0)个单位长度得到直线__________y=kx+b-m简记为“__________”.上加下减(2)直线y=k1x+b1和直线y=k2x+b2平行k1____k2,且b1_____b2=≠一、由一次函数图象的变换求解析式2.左右平移【问题1】将直线y=-6x+5向左平移2个单位长度后的直线解析式是什么?
向右平移3个单位长度后的解析式是什么?解:∵y=-6x+5与y轴的交点坐标为______,(0,5)设平移后的直线解析式为__________,若向左平移2个单位长度,则经过点_____(-2,5)y=-6x+b∴5=-6×(-2)+b,解得b=-7∴y=-6x-7.若向右平移3个单位长度,则经过点______(3,5)∴5=-6×3+b,解得b=23.∴y=-6x+23.一、由一次函数图象的变换求解析式你能归纳出直线y=kx+b向左(或向右)平移n个单位长度后的解析式吗?【思考】y=-6x+5y=-6x-7向左平移2个单位长度=-6(x_____)+5+2y=-6x+5向右平移3个单位长度y=-6x+23=-6(x_____)+5-3【观察】直线y=kx+b向左平移n个单位长度得到__________y=k(x+n)+b直线y=kx+b向右平移n个单位长度得到__________y=k(x-n)+b简记为“__________”.左加右减一、由一次函数图象的变换求解析式(1)直线y=2x向下平移2个单位长度得到的直线是()
A.y=2(x+2)
B.y=2(x-2)
C.y=2x-2
D.y=2x+2
【针对训练1】C(2)直线y=3x+2向左平移4个单位长度,得到直线_____________.y=3x+14(3)函数y=2x-3的图象可以看作由函数y=2x+7的图象向____平移____个单位长度得到.下10(4)如图,图中直线向上平移1个单位,向左平移2个单位后,得到的解析式为___________y=x+4一、由一次函数图象的变换求解析式3.直线关于x轴或y轴对称【问题2】求直线y=-2x+4关于x轴对称的直线解析式,
关于y轴对称的直线解析式解:直线y=-2x+4与x轴的交点坐标为______,与y轴的交点坐标为_______.(2,0)(0,4)设关于x轴对称的直线解析式为y=k1x+b1,则该直线经过点_______,_______(2,0)(0,-4)∴y=2x-4.
设关于y轴对称的直线解析式为y=k2x+b2,则该直线经过点_______,_______(-2,0)(0,4)
∴y=2x+4.一、由一次函数图象的变换求解析式【思考】试猜想直线y=kx+b关于x轴对称和关于y轴对称的直线的解析式.【观察】y=-2x+4关于x轴对称y=-2x+4关于y轴对称y=2x-4y=2x+4直线y=kx+b关于x轴对称的直线解析式为_____________,
关于y轴对称的直线解析式为_____________.y=-kx-by=-kx+b【针对训练2】直线y=-x+1关于x轴对称的直线解析式为___________
关于y轴对称的直线解析式为___________y=x-1y=x+1一、由一次函数图象的变换求解析式4.两直线互相垂直——教材P92例3【猜想】这两条直线有何位置关系?
如何证明?一、由一次函数图象的变换求解析式
∵AC2+BC2=AB2,∴∠ACB=90°,AC⊥BC,即两条直线互相垂直.【归纳】已知直线l1:y=k1x+b1(k1≠0),直线l2:y=k2x+b2(k2≠0),若l1⊥l2,则k1·k2=____.-1一、由一次函数图象的变换求解析式
【针对训练3】
y=3x+1专题二:一次函数与坐标轴围成的三角形二、一次函数与坐标轴围成的三角形【问题3】已知一次函数的图象经过点
M(-3,2),且平行于直线
y
=
4x
-
1.(1)求这个函数图象的解析式;(2)所求得的一次函数的图象与坐标轴围成的三角形的面积.解:(1)
设
y
=kx
+
b.∵y
=kx
+
b
与
y
=
4x
-
1平行,∴k
=
4,∵y
=kx
+
b
经过点
M(-3,2),又
k
=
4,∴4×(-3)+
b
=
2,解得b
=
14,∴y
=4x
+
14.
【解题关键】找到三角形的___和____底高二、一次函数与坐标轴围成的三角形如图,一次函数
y
=
x
+
2
的图象分别与
x
轴和
y
轴交于C,A
两点,且与正比例函数
y
=kx
的图象交于点
B(-1,m).(1)
求
m
的值;(2)求正比例函数的解析式;(3)
点
D
是一次函数图象上的一点,且△OCD
的面积是
3,求点
D
的坐标.【针对训练4】二、一次函数与坐标轴围成的三角形解:(1)∵点
B(-1,m)
在一次函数
y
=
x
+
2
的图象上,∴m
=
-
1
+
2
=
1.(2)∵正比例函数图象经过点
B(-1,1),∴-
k
=
1,即
k
=
-
1.
∴y
=
-
x.·D
∴|
x
+
2
|
=
3.当
x
+
2
=
3
时,x
=
3
-
2
=
1,∴点
D的坐标为(1,3);当
x
+
2
=
-3
时,x
=
-
3
-
2
=
-5,∴点
D的坐标为(-5,-3).故
D
的坐标为(1,3)或(-5,-3).二、一次函数与坐标轴围成的三角形【针对训练5】如图,在平面直角坐标系中,已知一次函数的图象过点A(0,5),B(-1,4)和点P(m,n).(1)求这个一次函数的解析式;(2)当n=2时,求直线AB,直线OP与x轴围成的图形的面积;(3)当△OAP的面积等于△OAB的面积的2倍时,求n的值.二、一次函数与坐标轴围成的三角形
C
二、一次函数与坐标轴围成的三角形
A.2B.4C.2或
4D.2或
6D【针对训练6】课堂小结一、由一次函数图象的变换求解析式1.平移——“上加下减,左加右减”y=kx+by=k(x+n)+by=kx+b-my=kx+b+my=k(x-n)+b向上m个向下m个向左n个向右n个直线y=kx+b关于x轴对称的直线解析式为_____________,
关于y轴对称的直线解析式为_____________.y=-kx-by=-kx+b2.对称3.两直线垂直y=k1x+b1与y=k2x+b2垂直
k1·k2=____.-1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高三班会演讲稿
- 4 公民的基本权利和义务(教学设计)2023-2024学年统编版道德与法治六年级上册
- logo购买合同范本
- 100以内的加法和减法(二)-不退位减(教学设计)-2024-2025学年二年级上册数学人教版
- 食品运送合同范本
- 12急行跳远教学设计8-八年级体育与健康
- Module 3 Unit1 Point to the door(教学设计)2024-2025学年外研版(三起)英语三年级上册
- 研学活动合同范本
- 2024-2025学年九年级上学期牛津译林版英语Unit 5 Reading 教学设计
- 2023初一暑假前教育家长会演讲稿
- 华南师范大学333教育综合专业硕士历年考研真题汇编(含部分答案)合集
- 食管早癌的内镜诊断
- 餐饮制度清单
- 医德医风考评内容及量化考评标准
- 人体解剖学题库(含答案)
- 复工复产应急处置方案
- 历史类常识经典考试题100题带答案(能力提升)
- 水利水电工程建设用地设计标准(征求意见稿)
- 《了解纹样》参考课件
- 小学信息技术-第8册全册-6年级下-电子工业出版社
- 健康生活的五大要素
评论
0/150
提交评论