版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省信阳市贤山中学高二数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设集合,,则 (
)
A.
B.
C.
D.参考答案:C略2.把方程化为以参数的参数方程是(
)A.
B.
C.
D.参考答案:D3.一个高为2的三棱锥的三视图如图所示,其中俯视图是一个腰长为2的等腰直角三角形,则该几何体外接球的体积()A.12π B.9π C.4π D.π参考答案:C【考点】由三视图求面积、体积.【分析】PC的中点为O,连接OA,OB,运用线面垂直的判断和性质,证得BC⊥PB,可得O为球心,求出半径,即可得到体积.【解答】解:一个高为2的三棱锥P﹣ABC,如图所示,PC的中点为O,连接OA,OB,由PA⊥底面ABC,可得PA⊥BC,AB⊥BC,可得BC⊥平面PAB,即有BC⊥PB,可得OA=OB=OC=OP,即O为球心,半径为,则球的体积为V=π?()3=4π.故选:C.4.正三棱柱底面边长为6,侧棱长为3,则正三棱柱的体积为(
)A.
B.
C.
D.27参考答案:C5.在等差数列中,若,公差,则有,类比上述性质,在等比数列中,若,公比,则,,,的一个不等关系是(
)A.
B.
C.
D.参考答案:A6.已知实数a满足,则函数的零点在下列哪个区间内A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2)参考答案:B【分析】由3a=5可得a值,分析函数为增函数,依次分析f(﹣2)、f(﹣1)、f(0)的值,由函数零点存在性定理得答案.【详解】根据题意,实数a满足3a=5,则a=log35>1,则函数为增函数,且f(﹣2)=(log35)﹣2+2×(﹣2)﹣log53<0,f(﹣1)=(log35)﹣1+2×(﹣1)﹣log53=﹣2<0,f(0)=(log35)0﹣log53=1﹣log53>0,由函数零点存在性可知函数f(x)的零点在区间(﹣1,0)上,故选:B.【点睛】本题考查函数零点存在性定理的应用,分析函数的单调性是关键.7.在中,分别是三内角的对边,且,则角等于(
)
A.
B.
C.
D.参考答案:B略8.设有下面四个命题:抛物线的焦点坐标为;,方程表示圆;,直线与圆都相交;过点且与抛物线有且只有一个公共点的直线有2条.那么,下列命题中为真命题的是(
)A.
B.
C.
D.参考答案:B对于:由题意可得,命题为真命题;对于:当时,方程为,表示圆,故命题为真命题;对于:由于直线过定点(3,2),此点在圆外,故直线与圆不一定相交,所以命题为假命题;综上可得为真命题,选B。
9.一个正三角形的外接圆的半径为1,向该圆内随机投一点P,点P恰好落在正三角形内的概率是
(
).
.
.
.
参考答案:A10.奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.﹣2 B.﹣1 C.0 D.1参考答案:D【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】根据函数的奇偶性的性质,得到f(x+8)=f(x),即可得到结论.【解答】解:∵f(x+2)为偶函数,f(x)是奇函数,∴设g(x)=f(x+2),则g(﹣x)=g(x),即f(﹣x+2)=f(x+2),∵f(x)是奇函数,∴f(﹣x+2)=f(x+2)=﹣f(x﹣2),即f(x+4)=﹣f(x),f(x+8)=f(x+4+4)=﹣f(x+4)=f(x),则f(8)=f(0)=0,f(9)=f(1)=1,∴f(8)+f(9)=0+1=1,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.二、填空题:本大题共7小题,每小题4分,共28分11.由曲线与y=x,x=4以及x轴所围成的封闭图形的面积是______;
参考答案:12.面积为的平面凸四边形的第条边的边长记为,此四边形内任一点P到第条边的距离为,若,则;根据以上性质,体积为V的三棱锥的第个面的面积记为,此三棱锥内任一点Q到第个面的距离记为,若,则_________。
参考答案:略13.如果复数是实数,则实数_________。参考答案:-114.在数列{an}中,a1=a7=1,|an+1-an|=1,Sn是数列{an}的前n项和,则S10的最大值等于__________.参考答案:略15.已知双曲线﹣=1(a>0,b>0),若过其右焦点F作倾斜角为45°的直线l与双曲线右支有两个不同的交点,则双曲线的离心率的范围是.参考答案:(1,)【考点】双曲线的简单性质.【分析】要使直线与双曲线有两个交点,需使双曲线的其中一渐近线方程的斜率小于直线的斜率,即<tan45°=1,求得a和b的不等式关系,进而转化成a和c的不等式关系,求得离心率的一个范围,最后根据双曲线的离心率大于1,综合可得求得e的范围.【解答】解:要使直线与双曲线有两个交点,需使双曲线的其中一渐近线方程的斜率小于直线的斜率,即<tan45°=1,即b<a∴<a,整理得c<a,∴e=<,∵双曲线中e>1,∴e的范围是(1,)故答案为(1,).【点评】本题以双曲线为载体,考查了双曲线的简单性质.在求离心率的范围时,注意双曲线的离心率大于1.16.数列{an}的通项公式,前n项和为Sn,则S2012=___________。参考答案:3018
略17.在中,,,,则的面积为
.参考答案:3略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知向量,,函数,三个内角的对边分别为.(Ⅰ)求的最小正周期和单调递增区间;(Ⅱ)若,求的面积.参考答案:解:(Ⅰ)由题意得==,令解得所以函数的单调增区间为.(Ⅱ)解法一:因为所以,又,,所以,所以,
由正弦定理把代入,得到
得或者,因为为钝角,所以舍去所以,得.所以,的面积.解法二:同上(略),
由余弦定理,,得,或(舍去)所以,的面积.略19.已知函数 (1)若,解不等式; (2)如果,求的取值范围.参考答案:解:⑴
当时,.由得 当时,不等式化为即,其解集为. 当时,不等式化为,不可能成立,其解集为. 当时,不等式化为即,其解集为.
综上,的解集为.
⑵≥,
∴≥2,∴≥3或≤-1.
略20.(本小题满分10分)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,.(Ⅰ)求B的大小;(Ⅱ)若,,求b.参考答案:解:(Ⅰ)由,根据正弦定理得,所以,由为锐角三角形得.
(Ⅱ)根据余弦定理,得.
所以,.
.21.如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACD(1)求证:平面ADE⊥平面BCE;(2)求点D到平面AEC的距离;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.参考答案:考点:点、线、面间的距离计算;直线与平面平行的判定;平面与平面垂直的判定.专题:空间位置关系与距离.分析:(1)根据面面垂直的判定定理推断出平面ADE⊥平面BCE;(2)由BD交平面ACE的交点为BD的中点,可是点D与点B到平面ACE的距离相等,进而根据BF⊥平面ACE,所以BF为点B到平面ACE的距离,解三角形ABE和三角形CBE可得答案.(3)在△ABE中过M点作MG∥AE交BE于G点,在△BEC中过G点作GN∥BC交EC于N点,连MN,证明平面MGE∥平面ADE,可得MN∥平面ADE,从而可得结论.解答: 证明:(Ⅰ)∵BF⊥平面ACE,AE?平面ACE,∴BF⊥AE,BF⊥CE,∵EB=BC,∴F是CE的中点,又∵AD⊥平面ABE,AD?平面ABCD,∴平面ABCD⊥平面ABE,∵平面ABCD∩平面ABE=AB,BC⊥AB∴BC⊥平面ABE,从而BC⊥AE,且BC∩BF=B,∴AE⊥平面BCE,又AE?平面ADE,故平面平面ADE⊥平面BCE.(2)(Ⅱ)如图,连接BD交AC于点O,则点O是BD的中点,∴点D与点B到平面ACE的距离相等.∵BF⊥平面ACE,∴BF为点B到平面ACE的距离.∵AE⊥平面BCE,∴AE⊥BE.又∵AE=BE,∴△AEB是等腰直角三角形,∵AE=2,∴AB=2,∴BE=2sin45°==2,又在Rt△CBE中,CE==2,∴BF===.故点D到平面ACE的距离是.(3)在△ABE中过M点作MG∥AE交BE于G点,在△BEC中过G点作GN∥BC交EC于N点,连MN,∴CN=CE.∵MG∥AE,MG?平面ADE,AE?平面ADE,∴MG∥平面ADE.同理,GN∥平面ADE,且MG与GN交于G点,∴平面MGE∥平面ADE.又MN?平面MGN,∴MN∥平面ADE.故N点为线段CE上靠近C点的一个三等分点.点评:本题考查面面垂直和线面平行的判定,以及点到平面的距离的计算,考查了推理论证和逻辑思维能力.22.已知数列{}满足,(n>1)(1).写出数列的前4项;(2)求数列{}的通项公式;(3)求数列{}的前n项和。参考答案:(1)=3,――――――――――――1分=7―――――――――――――2分=15
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年宁夏农垦金融控股有限公司招聘笔试参考题库含答案解析
- 2025年度住宅小区地下车库车位产权转让及车位租赁合同3篇
- 2025版二手房买卖家居风水咨询合同3篇
- 2025年度个人汽车租赁押金退还服务协议2篇
- 2025年度文化艺术品展览与拍卖合作协议3篇
- 2025年全球及中国达格列净片行业头部企业市场占有率及排名调研报告
- 2025-2030全球工业系统智能化解决方案行业调研及趋势分析报告
- 2025-2030全球吸附无细胞百白破联合疫苗行业调研及趋势分析报告
- 2024年科普知识竞赛试题库及答案(共80题)
- 所有股东股份转让协议
- GB/T 45120-2024道路车辆48 V供电电压电气要求及试验
- 2025年上海市嘉定区中考英语一模试卷
- 2025年中核财务有限责任公司招聘笔试参考题库含答案解析
- 春节文化常识单选题100道及答案
- 华中师大一附中2024-2025学年度上学期高三年级第二次考试数学试题(含解析)
- 12123交管学法减分考试题及答案
- 2025年寒假实践特色作业设计模板
- 《数据采集技术》课件-XPath 解析库
- 财务报销流程培训课程
- 成人脑室外引流护理-中华护理学会团体 标准
- 24年追觅在线测评28题及答案
评论
0/150
提交评论