版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年江西省吉安市永丰中学数学高三第一学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.己知函数若函数的图象上关于原点对称的点有2对,则实数的取值范围是()A. B. C. D.2.刘徽(约公元225年-295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一他在割圆术中提出的,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正n边形等分成n个等腰三角形(如图所示),当n变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,得到的近似值为()A. B. C. D.3.tan570°=()A. B.- C. D.4.设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为A. B.C.2 D.5.设为非零向量,则“”是“与共线”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件6.如图,圆锥底面半径为,体积为,、是底面圆的两条互相垂直的直径,是母线的中点,已知过与的平面与圆锥侧面的交线是以为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点的距离等于()A. B.1 C. D.7.某四棱锥的三视图如图所示,则该四棱锥的体积为()A. B. C. D.8.如图,平面四边形中,,,,,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A. B. C. D.9.已知定义在上的函数在区间上单调递增,且的图象关于对称,若实数满足,则的取值范围是()A. B. C. D.10.如图所示,三国时代数学家赵爽在《周髀算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一内角为,若向弦图内随机抛掷500颗米粒(米粒大小忽略不计,取),则落在小正方形(阴影)内的米粒数大约为()A.134 B.67 C.182 D.10811.某学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为的样本,其频率分布直方图如图所示,其中支出在(单位:元)的同学有34人,则的值为()A.100 B.1000 C.90 D.9012.某几何体的三视图如图所示,则该几何体的最长棱的长为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知实数x,y满足,则的最大值为____________.14.在平面直角坐标系中,圆.已知过原点且相互垂直的两条直线和,其中与圆相交于,两点,与圆相切于点.若,则直线的斜率为_____________.15.已知函数,则函数的极大值为___________.16.命题“对任意,”的否定是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,点在椭圆上.(Ⅰ)求椭圆的标准方程;(Ⅱ)设直线交椭圆于两点,线段的中点在直线上,求证:线段的中垂线恒过定点.18.(12分)如图,在中,,的角平分线与交于点,.(Ⅰ)求;(Ⅱ)求的面积.19.(12分)设等比数列的前项和为,若(Ⅰ)求数列的通项公式;(Ⅱ)在和之间插入个实数,使得这个数依次组成公差为的等差数列,设数列的前项和为,求证:.20.(12分)设椭圆的左右焦点分别为,离心率,右准线为,是上的两个动点,.(Ⅰ)若,求的值;(Ⅱ)证明:当取最小值时,与共线.21.(12分)已知函数有两个极值点,.(1)求实数的取值范围;(2)证明:.22.(10分)某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过度的部分按元/度收费,超过度但不超过度的部分按元/度收费,超过度的部分按元/度收费.(I)求某户居民用电费用(单位:元)关于月用电量(单位:度)的函数解析式;(Ⅱ)为了了解居民的用电情况,通过抽样,获得了今年1月份户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这户居民中,今年1月份用电费用不超过元的占,求,的值;(Ⅲ)在满足(Ⅱ)的条件下,若以这户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点代替,记为该居民用户1月份的用电费用,求的分布列和数学期望.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
考虑当时,有两个不同的实数解,令,则有两个不同的零点,利用导数和零点存在定理可得实数的取值范围.【详解】因为的图象上关于原点对称的点有2对,所以时,有两个不同的实数解.令,则在有两个不同的零点.又,当时,,故在上为增函数,在上至多一个零点,舍.当时,若,则,在上为增函数;若,则,在上为减函数;故,因为有两个不同的零点,所以,解得.又当时,且,故在上存在一个零点.又,其中.令,则,当时,,故为减函数,所以即.因为,所以在上也存在一个零点.综上,当时,有两个不同的零点.故选:B.【点睛】本题考查函数的零点,一般地,较为复杂的函数的零点,必须先利用导数研究函数的单调性,再结合零点存在定理说明零点的存在性,本题属于难题.2、A【解析】
设圆的半径为,每个等腰三角形的顶角为,则每个等腰三角形的面积为,由割圆术可得圆的面积为,整理可得,当时即可为所求.【详解】由割圆术可知当n变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,设圆的半径为,每个等腰三角形的顶角为,所以每个等腰三角形的面积为,所以圆的面积为,即,所以当时,可得,故选:A【点睛】本题考查三角形面积公式的应用,考查阅读分析能力.3、A【解析】
直接利用诱导公式化简求解即可.【详解】tan570°=tan(360°+210°)=tan210°=tan(180°+30°)=tan30°=.故选:A.【点睛】本题考查三角函数的恒等变换及化简求值,主要考查诱导公式的应用,属于基础题.4、A【解析】
准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率.【详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心.,又点在圆上,,即.,故选A.【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.5、A【解析】
根据向量共线的性质依次判断充分性和必要性得到答案.【详解】若,则与共线,且方向相同,充分性;当与共线,方向相反时,,故不必要.故选:.【点睛】本题考查了向量共线,充分不必要条件,意在考查学生的推断能力.6、D【解析】
建立平面直角坐标系,求得抛物线的轨迹方程,解直角三角形求得抛物线的焦点到圆锥顶点的距离.【详解】将抛物线放入坐标系,如图所示,∵,,,∴,设抛物线,代入点,可得∴焦点为,即焦点为中点,设焦点为,,,∴.故选:D【点睛】本小题考查圆锥曲线的概念,抛物线的性质,两点间的距离等基础知识;考查运算求解能力,空间想象能力,推理论证能力,应用意识.7、B【解析】
由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,由此求出四棱锥的体积.【详解】由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,画出四棱锥的直观图,如图所示:则该四棱锥的体积为.故选:B.【点睛】本题考查了利用三视图求几何体体积的问题,是基础题.8、C【解析】
由题意可得面,可知,因为,则面,于是.由此推出三棱锥外接球球心是的中点,进而算出,外接球半径为1,得出结果.【详解】解:由,翻折后得到,又,则面,可知.又因为,则面,于是,因此三棱锥外接球球心是的中点.计算可知,则外接球半径为1,从而外接球表面积为.故选:C.【点睛】本题主要考查简单的几何体、球的表面积等基础知识;考查空间想象能力、推理论证能力、运算求解能力及创新意识,属于中档题.9、C【解析】
根据题意,由函数的图象变换分析可得函数为偶函数,又由函数在区间上单调递增,分析可得,解可得的取值范围,即可得答案.【详解】将函数的图象向左平移个单位长度可得函数的图象,由于函数的图象关于直线对称,则函数的图象关于轴对称,即函数为偶函数,由,得,函数在区间上单调递增,则,得,解得.因此,实数的取值范围是.故选:C.【点睛】本题考查利用函数的单调性与奇偶性解不等式,注意分析函数的奇偶性,属于中等题.10、B【解析】
根据几何概型的概率公式求出对应面积之比即可得到结论.【详解】解:设大正方形的边长为1,则小直角三角形的边长为,
则小正方形的边长为,小正方形的面积,
则落在小正方形(阴影)内的米粒数大约为,
故选:B.【点睛】本题主要考查几何概型的概率的应用,求出对应的面积之比是解决本题的关键.11、A【解析】
利用频率分布直方图得到支出在的同学的频率,再结合支出在(单位:元)的同学有34人,即得解【详解】由题意,支出在(单位:元)的同学有34人由频率分布直方图可知,支出在的同学的频率为.故选:A【点睛】本题考查了频率分布直方图的应用,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.12、D【解析】
先根据三视图还原几何体是一个四棱锥,根据三视图的数据,计算各棱的长度.【详解】根据三视图可知,几何体是一个四棱锥,如图所示:由三视图知:,所以,所以,所以该几何体的最长棱的长为故选:D【点睛】本题主要考查三视图的应用,还考查了空间想象和运算求解的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
直接用表示出,然后由不等式性质得出结论.【详解】由题意,又,∴,即,∴的最大值为1.故答案为:1.【点睛】本题考查不等式的性质,掌握不等式的性质是解题关键.14、【解析】
设:,:,利用点到直线的距离,列出式子,求出的值即可.【详解】解:由圆,可知圆心,半径为.设直线:,则:,圆心到直线的距离为,,.圆心到直线的距离为半径,即,并根据垂径定理的应用,可列式得到,解得.故答案为:.【点睛】本题主要考查点到直线的距离公式的运用,并结合圆的方程,垂径定理的基本知识,属于中档题.15、【解析】
对函数求导,通过赋值,求得,再对函数单调性进行分析,求得极大值.【详解】,故解得,,令,解得函数在单调递增,在单调递减,故的极大值为故答案为:.【点睛】本题考查函数极值的求解,难点是要通过赋值,求出未知量.16、存在,使得【解析】试题分析:根据命题否定的概念,可知命题“对任意,”的否定是“存在,使得”.考点:命题的否定.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)详见解析.【解析】
(Ⅰ)把点代入椭圆方程,结合离心率得到关于的方程,解方程即可;(Ⅱ)联立直线与椭圆方程得到关于的一元二次方程,利用韦达定理和中垂线的定义求出线段的中垂线方程即可证明.【详解】(Ⅰ)由已知椭圆过点得,,又,得,所以,即椭圆方程为.(Ⅱ)证明:由,得,由,得,由韦达定理可得,,设的中点为,得,即,,的中垂线方程为,即,故得中垂线恒过点.【点睛】本题考查椭圆的标准方程及其几何性质、直线与椭圆的位置关系及椭圆中的定值问题;考查运算求解能力和知识的综合运用能力;正确求出椭圆方程和利用中垂线的定义正确表示出中垂线方程是求解本题的关键;属于中档题.18、(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)在中,由余弦定理得,由正弦定理得,可得解;(Ⅱ)由(Ⅰ)可知,进而得,在中,由正弦定理得,所以的面积即可得解.试题解析:(Ⅰ)在中,由余弦定理得,所以,由正弦定理得,所以.(Ⅱ)由(Ⅰ)可知.在中,.在中,由正弦定理得,所以.所以的面积.19、(Ⅰ);(Ⅱ)详见解析.【解析】
(Ⅰ),,两式相减化简整理利用等比数列的通项公式即可得出.(Ⅱ)由题设可得,可得,利用错位相减法即可得出.【详解】解:(Ⅰ)因为,故,两式相减可得,,故,因为是等比数列,∴,又,所以,故,所以;(Ⅱ)由题设可得,所以,所以,①则,②①-②得:,所以,得证.【点睛】本题考查了数列递推关系、等比数列的通项公式求和公式、错位相减法,考查了推理能力与计算能力,属于中档题.20、(Ⅰ)(Ⅱ)证明见解析.【解析】由与,得,,的方程为.设,则,由得.①(Ⅰ)由,得,②,③由①、②、③三式,消去,并求得,故.(Ⅱ),当且仅当或时,取最小值,此时,,故与共线.21、(1)(2)证明见解析【解析】
(1)先求得导函数,根据两个极值点可知有两个不等实根,构造函数,求得;讨论和两种情况,即可确定零点的情况,即可由零点的情况确定的取值范围;(2)根据极值点定义可知,,代入不等式化简变形后可知只需证明;构造函数,并求得,进而判断的单调区间,由题意可知,并设,构造函数,并求得,即可判断在内的单调性和最值,进而可得,即可由函数性质得,进而由单调性证明,即证明,从而证明原不等式成立.【详解】(1)函数则,因为存在两个极值点,,所以有两个不等实根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论