版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省晋城市胡底中学2021-2022学年高一数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.知函数,,则是(
)A.最小正周期为的奇函数 B.最小正周期为的奇函数C.最小正周期为的偶函数 D.最小正周期为的偶函数参考答案:C略2.将偶数按如图所示的规律排列下去,且用表示位于从上到下第行,从左到右列的数,比如,若,则有(
)A.
B. C.
D.参考答案:D略3.函数的值域为
(
)A、
B、
C、
D、参考答案:A4.函数的最大值为,最小值为,则
A.
B.
C.
D.参考答案:D5.下列函数中,表示同一函数的一组是()A.B.C.D.参考答案:B6.一个几何体的三视图如图所示,该几何体的体积是()A.16π B.16 C. D.参考答案:C【考点】由三视图求面积、体积.【专题】空间位置关系与距离.【分析】根据几何体的三视图得出该几何体是圆锥,求出它的体积即可.【解答】解:根据几何体的三视图,得;该几何体是底面直径为4,高为4的圆锥,它的体积为V=?π?4=.故选:C.【点评】本题考查了空间几何体的三视图的应用问题,解题时应根据三视图得出几何体是什么图形,从而解得结果,是基础题.7.函数的定义域为(
)A.B.C.D.参考答案:D
8.如果函数f(x)=(1-2a)x在实数集R上是减函数,那么实数a的取值范围是()A.
B.
C.
D.参考答案:A9.下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正视图、俯视图如下图;②存在四棱柱,其正视图、俯视图如下图;③存在圆柱,其正视图、俯视图如下图.其中真命题的个数是()A.3
B.2C.1
D.0参考答案:A10.有五组变量:①汽车的重量和汽车每消耗l升汽油所行驶的平均路程;②平均日学习时间和平均学习成绩;③某人每日吸烟量和其身体健康情况;④正方形的边长和面积;⑤汽车的重量和百公里耗油量;其中两个变量成正相关的是()A.①③ B.②④ C.②⑤ D.④⑤参考答案:C【考点】BG:变量间的相关关系;BH:两个变量的线性相关.【分析】①汽车的重量和汽车每消耗1升汽油所行驶的平均路程是负相关的关系;②平均日学习时间和平均学习成绩的关系是一个正相关;③某人每日吸烟量和其身体健康情况是负相关的关系;④正方形的边长和面积的倒数的关系是函数关系;⑤汽车的重量和百公里耗油量是正相关的;【解答】解:①汽车的重量和汽车每消耗1升汽油所行驶的平均路程是负相关的关系;②平均日学习时间和平均学习成绩的关系是一个正相关;③某人每日吸烟量和其身体健康情况是负相关的关系;④正方形的边长和面积的倒数的关系是函数关系;⑤汽车的重量和百公里耗油量是正相关的.故两个变量成正相关的是②⑤.故选C.二、填空题:本大题共7小题,每小题4分,共28分11.某食品的保鲜时间(单位:小时)与存储温度(单位:℃)满足函数关系.且该食品在℃的保鲜时间是小时.已知甲在某日上午时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示,给出以下四个结论:①该食品在℃的保鲜时间是小时.②当时,该食品的保鲜时间随着的增大而逐渐减少.③到了此日时,甲所购买的食品还在保鲜时间内.④到了此日时,甲所购买的食品已然过了保鲜时间.其中,所有正确结论序号是__________.参考答案:①④∵食品的保鲜时间与储藏温度满足函数关系式,且该食品在℃时保鲜时间是小时.∴,即,解得.∴.①当时,,所以该食品在℃的保鲜时间是小时,故①正确;②当时,时间不变,故②错误;③由图象可知,当到此日小时,温度超过度,此时的保鲜时间不超过小时,所以到了此日时,甲所购买的食品不在保鲜时间内,故③错误;④由③知,④正确.综上,正确结论的序号是①④.12.直线x-y+3=0被圆所截得的弦长为,则实数=
参考答案:略13.方程4cosx+sin2x+m﹣4=0恒有实数解,则实数m的取值范围是.参考答案:[0,8]【考点】同角三角函数基本关系的运用;三角函数的最值.【分析】分离参数,可得m=(cosx﹣2)2﹣1,利用余弦函数的单调性与二次函数的性质可得实数m的取值范围.【解答】解:∵m=4﹣4cosx﹣(1﹣cos2x)=(cosx﹣2)2﹣1,当cosx=1时,mmin=0,当cosx=﹣1时,mmax=(﹣1﹣2)2﹣1=8,∴实数m的取值范围是[0,8].故答案为:[0,8].14.
已知指数函数过点P(1,2010),则它的反函数的解析式为:
.参考答案:15.集合
与集合的元素个数相同,则的取值集合为__________________.参考答案:16.在中,内角的对边分别为,若,且,则的面积最大值为__________.参考答案:略17.若二次函数f(x)的图象关于x=2对称,且f(a)≤f(0)<f(1),则实数a的取值范围是_____.参考答案:a≤0或a≥4【分析】分析得到二次函数f(x)开口向下,在(﹣∞,2)上单调递增,在(2,+∞)上单调递减.再对分类讨论得解.【详解】由题意可知二次函数f(x)的对称轴为x=2,因为f(0)<f(1),所以f(x)在(﹣∞,2)上单调递增,所以二次函数f(x)开口向下,在(﹣∞,2)上单调递增,在(2,+∞)上单调递减.①当a∈时:,解得a≤0.②当a∈(2,+∞)时:因为f(4)=f(0),所以,解得a≥4.综上所求:a≤0或a≥4.故答案为:a≤0或a≥4.【点睛】本题主要考查二次函数的图象和性质,意在考查学生对这些知识的理解掌握水平.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)若不等式的解集,求不等式的解集。参考答案:解:∵不等式的解集
∴-、是的两根,且
∴,………6分
∴,∴不等式,
即
,解集为:.…12分略19.某地统计局调查了10000名居民的月收入,并根据所得数据绘制了样本的频率分布直方图如图所示。(1)求居民月收入在[3000,3500)内的频率;(2)根据频率分布直方图求出样本数据的中位数;(3)为了分析居民的月收入与年龄、职业等方面的关系,必须按月收入再从这10000中用分层抽样的方法抽出100人做进一步分析,则应从月收入在[2500,3000)内的居民中抽取多少人?参考答案:(1)0.15(2)2400(3)25人【分析】(1)由频率分布直方图计算可得月收入在[3000,3500)内的频率;(2)分别计算小长方形的面积值,利用中位数的特点即可确定中位数的值;(3)首先确定10000人中月收入在[2500,3000]内的人数,然后结合分层抽样的特点可得应抽取的人数.【详解】(1)居民月收入在[3000,3500]内的频率为(2)因,,,,所以样本数据的中位数为.(3)居民月收入在[2500,3000]内的频率为,所以这10000人中月收入在[2500,3000]内的人数为.从这10000人中用分层抽样的方法抽出100人,则应从月收入在[2500,3000]内的居民中抽取(人).【点睛】利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即是众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.20.已知函数y=4cos2x+4sinxcosx﹣2,(x∈R).(1)求函数的最小正周期;(2)求函数的最大值及其相对应的x值;(3)写出函数的单调增区间.参考答案:【考点】二倍角的余弦;两角和与差的正弦函数;二倍角的正弦;三角函数的周期性及其求法;正弦函数的单调性.【分析】(1)利用二倍角的余弦与正弦可将函数y=4cos2x+4sinxcosx﹣2转化为y=4sin(2x+),利用三角函数的周期公式即可求得函数的最小正周期;(2)利用正弦函数的性质可求ymax,由2x+=2kπ+(k∈Z)可求其取最大值时相对应的x值;(3)利用正弦函数的单调性即可求得函数y=4cos2x+4sinxcosx﹣2的单调增区间.【解答】解:(1)∵y=4cos2x+4sinxcosx﹣2=2(1+cos2x)+2sn2x﹣2=2sin2x+2cos2x=4(sin2x+cos2x)=4sin(2x+),∴其最小正周期T==π;(2)当2x+=2kπ+(k∈Z),即x=kπ+(k∈Z)时,ymax=4;(3)由2kπ﹣≤2x+≤2kπ+(k∈Z),得﹣+kπ≤x≤+kπ(k∈Z),∴函数y=4cos2x+4sinxcosx﹣2的单调增区间为[﹣+kπ,+kπ](k∈Z).21.已知,函数.(I)证明:函数在上单调递增;()求函数的零点.参考答案:
略22.(12分)设函数f(x)=x2﹣ax+1,x∈[﹣1,2].(1)若函数f(x)为单调函数,求a的取值范围;(2)求函数f(x)的最小值.参考答案:【考点】二次函数的性质.【分析】(1)求出二次函数的对称轴,判断对称轴与区间的关系,求出a的取值范围.(2)讨论a的取值,判断f(x)在x∈[0,3]的单调性,求出f(x)的最小值即可.【解答】解:(1)函数f(x)=x2﹣ax+1,的对称轴为:x=,函数f(x)为单调函数,可得或,解得a∈(﹣∞,2]∪[4,+∞).(2)∵二次函数f(x)=x2﹣ax+1=(x﹣)2+1﹣a2,且x∈[﹣1,2],∴当∈[﹣1,2]时,即:a∈[﹣2,4]时,f(x)在x∈[﹣1,2]上先减后增,f(x)的最小值是f()=1﹣a2;当∈(﹣∞,﹣1)即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高校教师职业道德全真模拟考试试卷A卷含答案
- 2024年xx村年度脱贫户、监测户增收工作总结
- 牛津译林版英语高三上学期期末试题及答案指导
- 机电工程师招聘面试题与参考回答(某大型国企)
- 新修订《疫苗流通和预防接种管理条例》培训试题及答案
- 2024年简化货品采购协议格式
- 2024年限定区域分销商协议条款
- 2024年度工程领域劳务协议范本
- 2024年新汽车租赁经营协议样本
- 2024全新保健品商业合作协议样本
- 山东省济南市历下区2023-2024学年八年级上学期期中语文试题
- 图神经网络在生物医学影像分析中的应用
- 浅谈管理者的自我管理
- 第一章 结构及其设计 课件-2023-2024学年高中通用技术苏教版(2019)必修《技术与设计2》
- 语文教学常规检查表
- “思政”课社会实践
- 临时用电漏电保护器运行检测记录表
- 复杂性尿路感染
- 重度残疾儿童送教上门
- 膀胱癌综合治疗新进展
- 音乐ppt课件《小小的船》
评论
0/150
提交评论