




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年湖南省株洲市桃坑中学高二数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.“a>0”是“|a|>0”的()A、充分不必要条件
B、必要不充分条件C、充要条件
D、既不充分也不必要条件参考答案:A略2.设是直线,,是两个不同的平面,则下列结论正确的是().A、若∥,∥,则∥
B、若∥,⊥,则⊥C、若⊥,⊥,则⊥
D、若⊥,∥,则⊥参考答案:B略3.用二分法求方程的近似根的算法中要用哪种算法结构(
)A.顺序结构
B.条件结构
C.循环结构
D.以上都用参考答案:D
解析:任何一个算法都有顺序结构,循环结构一定包含条件结构,二分法用到循环结构4.函数f(x)在其定义域内可导,其图象如图所示,则导函数y=f′(x)的图象可能为()A. B. C. D.参考答案:C【考点】3O:函数的图象.【分析】根据函数的单调性确定f'(x)的符号即可.【解答】解:由函数f(x)的图象可知,函数在自变量逐渐增大的过程中,函数先递增,然后递减,再递增,当x>0时,函数单调递增,所以导数f'(x)的符号是正,负,正,正.对应的图象为C.故选C.5.已知圆C1:x2+y2+2x+8y﹣8=0与直线x+2y﹣1=0相交于两点A,B两点,则弦长|AB|=()A.10 B. C.2 D.4参考答案:C【考点】直线与圆的位置关系.【分析】由圆C的方程,找出圆心C的坐标及半径r,利用点到直线的距离公式求出圆心到直线l的距离d,根据垂径定理及勾股定理即可求出|AB|的长.【解答】解:由圆C1:(x+1)2+(y+4)2=25,得到圆心C(﹣1,﹣4),半径r=5,∴圆心到直线l:x+2y﹣1=0的距离d==2,则|AB|=2=2=2.故选:C.6.已知y=f(x)的导函数为y=f'(x),且在x=1处的切线方程为y=﹣x+3,则f(1)﹣f'(1)=()A.2 B.3 C.4 D.5参考答案:B【考点】利用导数研究曲线上某点切线方程.【分析】由已知切线的方程,结合导数的几何意义:函数在某点处的导数即为曲线在该点处切线的斜率,计算即可得到所求值.【解答】解:由f(x)在x=1处的切线方程为y=﹣x+3,可得则f(1)﹣f'(1)=3﹣1﹣(﹣1)=3.故选:B.7.已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若△ABF2是正三角形,则这个椭圆的离心率是(
)
A.
B.
C.
D.参考答案:C8.如右图所示,正三棱锥(顶点在底面的射影是底面正三角形的中心)中,分别是的中点,为上任意一点,则直线与所成的角的大小是()A.
B.
C.
D.随点的变化而变化。参考答案:B9.
某产品的广告费用x与销售额y的统计数据如下表广告费用x(万元)4235销售额y(万元)492639[学_54
根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为
63.6万元
65.5万元
67.7万元
72.0万元参考答案:B10.已知△ABC中,角A,B,C对的边分别为a,b,c,且,那么角A等于(
)A.135°
B.60°C.45°
D.135或45°参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.将6个相同的小球放入4个不同的盒子中,要求不出现空盒,共有_________种放法.(用数字作答)参考答案:10【分析】根据题意,用挡板法将6个小球排成一排,排好后有5个可用的空位,在其中任选3个插入挡板即可,最后由组合数公式计算,即可求解.【详解】根据题意,将6个小球排成一排,排好后有5个可用的空位,在5个空位中任选3个,插入挡板,共有种情况,可以将6个小球分成4组,依次放入4个不同的盒子中即可,所以共有10中不同的放法.【点睛】本题主要考查了排列、组合的应用,其中解答中根据题意合理使用挡板法求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.12.如图,已知可行域为△ABC及其内部,若目标函数z=kx+y,当且仅当在点B处取得最大值,则k的取值范围是
.
参考答案:13.如图,若射线OM,ON上分别存在点与点,则三角形面积之比.若不在同一平面内的射线OP,OQ上分别存在点,点和点,则类似的结论
。
参考答案:14.菱形ABCD的边长为2,且∠BAD=60°,将三角形ABD沿BD折起,得到三棱锥A-BCD,则三棱锥A-BCD体积的最大值为
参考答案:115.有两个等差数列2,6,10,…,190及2,8,14,…,200,由这两个等差数列的公共项按从小到大的顺序组成一个新数列,则这个新数列的前10项之和为.参考答案:560【考点】等差数列的通项公式;等差数列的前n项和.【分析】数列{an}与数列{bn}首项a1=b1=2,由这两个等差数列的公共项也是一个等差数列{cn},首项c1=2,公差为4与6的最小公倍数,d=12,由此能求出这个新数列的前10项之和.【解答】解:等差数列2,6,10,…,190的通项为an=2+(n﹣1)?4=4n﹣2,等差数列2,8,10,14,…,200的通项为bn=2+(n﹣1)?6=6n﹣4,数列{an}与数列{bn}首项a1=b1=2,由这两个等差数列的公共项也是一个等差数列{cn},首项c1=2,公差为4与6的最小公倍数,d=12,∴cn=2+(n﹣1)?12=12n﹣10,Sn==,∴=560.故答案为:560.16.的展开式中项的系数是15,则的值为
▲
。参考答案:5
17.从1,3,5,7四个数中选两个数字,从0,2,4三个数中选一个数字,组成没有重复数字的三位数,其中奇数的个数为_____________参考答案:60【分析】首先要分有0和没有0进行考虑,由于最后是奇数,所以有0时,0只能在中间,没有0时,偶数只能在前两位,然后分别求解即可.【详解】解:分两类考虑,第1类:有0,0只能排中间,共有种;第2类:没有0,且偶数只能放在前两位,共有;所以总共有12+48=60种故答案为:60.【点睛】本题主要考查计数原理的运用,采用先取后排的原则,排列时要注意特殊优先.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某单位从一所学校招收某类特殊人才.对20位已经选拨入围的学生进行运动协调能力和逻辑思维能力的测试,其测试结果如下表:
逻辑思维能力运动协调能力一般良好优秀一般221良好4b1优秀13a
例如,表中运动协调能力良好且逻辑思维能力一般的学生有4人.由于部分数据丢失,只知道从这20位参加测试的学生中随机抽取一位,抽到运动协调能力或逻辑思维能力优秀的学生的概率为.(1)求,的值.(2)从参加测试的20位学生中任意抽取2位,求其中至少有一位运动协调能力或逻辑思维能力优秀的学生的概率.(3)从参加测试的20位学生中任意抽取2位,设运动协调能力或逻辑思维能力优秀的学生人数为,求随机变量的分布列.参考答案:(1);(2);(3)见解析试题分析:(1)求,的值,由题意,从这位参加测试的学生中随机抽取一位,抽到运动协调能力或逻辑思维能力优秀的学生的概率为,而由表中数据可知,运动协调能力或逻辑思维能力优秀的学生共有人,可由,解出的值,从而得的值;(2)由题意,从人中任意抽取人的方法数为,而至少有一位运动协调能力或逻辑思维能力优秀的学生的对立事件是,没有取到运动协调能力或逻辑思维能力优秀的学生,而没有取到运动协调能力或逻辑思维能力优秀的学生的方法数为,由古典概型,可求出没有运动协调能力或逻辑思维能力优秀的学生的概率,从而得所求的概率;(3)由题意得的可能取值为,由古典概型,分别求出它们的概率,得随机变量的分布列,从而得数学期望.试题解析:(1)设事件:从位学生中随机抽取一位,抽到运动协调能力或逻辑思维能力优秀的学生.由题意可知,运动协调能力或逻辑思维能力优秀的学生共有人.则.解得.所以.4分(2)设事件:从人中任意抽取人,至少有一位运动协调能力或逻辑思维能力优秀的学生.由题意可知,至少有一项能力测试优秀的学生共有人.则.7分(3)的可能取值为,,.位学生中运动协调能力或逻辑思维能力优秀的学生人数为人.所以,,.所以的分布列为
0
1
2
所以,.13分考点:古典概型,分布列,数学期望.19.(本小题10分)已知等比数列单调递增,,,.(Ⅰ)求;(Ⅱ)若,求的最小值.参考答案:20.设函数的定义域为E,值域为F.(1)若E={1,2},判断实数λ=lg22+lg2lg5+lg5﹣与集合F的关系;(2)若E={1,2,a},F={0,},求实数a的值.(3)若,F=[2﹣3m,2﹣3n],求m,n的值.参考答案:解答:解:(1)∵,∴当x=1时,f(x)=0;当x=2时,f(x)=,∴F={0,}.∵λ=lg22+lg2lg5+lg5﹣16=lg2(lg2+lg5)+lg5﹣=lg2+lg5﹣=lg10﹣=.∴λ∈F.…(5分)(2)令f(a)=0,即,a=±1,取a=﹣1;令f(a)=,即,a=±2,取a=﹣2,故a=﹣1或﹣2.…(9分)(3)∵是偶函数,且f'(x)=>0,则函数f(x)在(﹣∞,0)上是减函数,在(0,+∞)上是增函数.∵x≠0,∴由题意可知:或0<.若,则有,即,整理得m2+3m+10=0,此时方程组无解;若0<,则有,即,∴m,n为方程x2﹣3x+1=0,的两个根.∵0<,∴m>n>0,∴m=,n=.…(16分)
略21.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,已知点A的极坐标为(,),直线l的极坐标方程为ρcos(θ﹣)=a,且点A在直线l上,(1)求a的值及直线l的直角坐标方程;(2)圆C的参数方程为(α为参数),试判断直线l与圆C的位置关系.参考答案:【考点】QH:参数方程化成普通方程;Q4:简单曲线的极坐标方程;QJ:直线的参数方程.【分析】(1)根据点A在直线l上,将点的极坐标代入直线的极坐标方程即可得出a值,再利用极坐标转化成直角坐标的转换公式求出直线l的直角坐标方程;(2)欲判断直线l和圆C的位置关系,只需求圆心到直线的距离与半径进行比较即可,根据点到线的距离公式求出圆心到直线的距离然后与半径比较.【解答】解:(1)点A(,)在直线l上,得cos(θ﹣)=a,∴a=,故直线l的方程可化为:ρsinθ+ρcosθ=2,得直线l的直角坐标方程为x+y﹣2=0;(2)消去参数α,得圆C的普通方程为(x﹣1)2+y2=1圆心C到直线l的距离d=<1,所以直线l和⊙C相交.【点评】本题主要考查了简单曲线的极坐标方程,以及圆的参数方程和直线与圆的位置关系的判定,属于基础题.22.环境问题是当今世界共同关注的问题,我国环保总局根据空气污染指数PM2.5浓度,制定了空气质量标准:空气污染指数(0,50](50,100](100,150](150,200](200,300](300,+∞)空气质量等级优良轻度污染中度污染重度污染严重污染
某市政府为了打造美丽城市,节能减排,从2010年开始考察了连续六年11月份的空气污染指数,绘制了频率分布直方图,经过分析研究,决定从2016年11月1日起在空气质量重度污染和严重污染的日子对机动车辆限号出行,即车牌尾号为单号的车辆单号出行,车牌尾号为双号的车辆双号出行(尾号是字母的,前13个视为单号,后13个视为双号).王先生有一辆车,若11月份被限行的概率为0.05.(1)求频率分布直方图中m的值;(2)若按分层抽样的方法,从空气质量等级为良与中度污染的天气中抽取6天,再从这6天中随机抽取2天,求至少有一天空气质量是中度污染的概率;(3)该市环保局为了调查汽车尾气排放对空气质量的影响,对限行两年来的11月份共60天的空气质量进行统计,其结果如下表:空气质量优良轻度污染中度污染重度污染严重污染天数112711731
根据限行前6年180天与限行后60天的数据,计算并填写2×2列联表,并回答是否有90%的把握认为空气质量的优良与汽车尾气的排放有关.
空气质量优、良空气质量污染总计限行前
限行后
总计
参考数据:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828
参考公式:,其中.参考答案:(1)0.003;(2);(3)有.【分析】(1)因为限行分单双号,王先生的车被限行的概率为0.05,再利用概率和为1解得答案.(2)利用分层抽样得到空气质量良的天气被抽取的有4天,空气中度污染的天气被抽取的有2天,利用排列组合公式的到没有中度污染的概率,用1减得到答案.(3)补全列联表,计算,跟临界值表作比较得到答案.【详解】(1)因为限行分单双号,王先生的车被限行的概率为0.05,所以空气重度污染和严重污染的概率应为0.05×2=0.1,由频率分布直方图可知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 延吉市Q中学初中地理生活化教学的现状、困境与突破路径
- 小学英语新教师职业适应的困境与突破:基于多维度视角的研究
- 学本课堂引领初中物理教学革新:理论实践与成效探究
- 大花龙胆止咳作用及药效物质基础的深度解析与研究
- 教育、科技、商业融合下的数字化健康教育创新模式探索
- 全面推进城市智能化升级从传统到数字化
- 2025年小学教师资格《综合素质》教育评价教育评价改革试点试题及答案
- 教育信息化的推动者-基于数字孪生的在线教育平台建设
- 2025年小学教师资格考试《综合素质》易错点专项训练试题卷及答案
- 2025年初中地理学业水平考试模拟试卷:乡土地理特色应用题及答案
- 生物质转化技术原理考核试卷
- 调味品中微生物安全-全面剖析
- 2025年高考化学考试易错题易错类型18物质的分离、提纯与鉴别(7大易错点)(学生版+解析)
- 审计报告模板
- 美容外科概论试题及答案
- 2025年全国燃气安全生产管理主要负责人考试笔试试题(500题)附答案
- TCECS24-2020钢结构防火涂料应用技术规程
- 2025-2030中国电动自行车充电桩行业市场深度分析及发展前景与投资研究报告
- 店长入股协议书范本
- 夏季高温季节施工应急预案
- 专升本心理学题库+参考答案
评论
0/150
提交评论