直接证明与间接证明(共30张)_第1页
直接证明与间接证明(共30张)_第2页
直接证明与间接证明(共30张)_第3页
直接证明与间接证明(共30张)_第4页
直接证明与间接证明(共30张)_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二章推理与证明2.2直接证明与间接证明2路边苦李

王戎7岁时,与小伙伴们外出游玩,看到路边的李树上结满了果子.小伙伴们纷纷去摘取果子,只有王戎站在原地不动.伙伴问他为什么不去摘?

情景导学

王戎回答说:“树在道边而多子,此必苦李.”小伙伴摘取一个尝了一下,果然是苦李.

王戎是怎么知道李子是苦的呢?他运用了怎样的推理方法?

王戎的推理方法是:假设李子不苦,则因树在“道”边,李子早就被别人采摘而没有了,这与“多李”产生矛盾.所以假设不成立,李为苦李.探究点1反证法的定义引例:证明:在一个三角形中至少有一个角不小于60°.已知:∠A,∠B,∠C是△ABC的内角.求证:∠A,∠B,∠C中至少有一个不小于60°.

探究新知证明:假设的三个内角∠A,∠

B,

C都小于60°,则有∠A<60°,∠B<60°,∠C<60°所以∠A+∠B+∠C<180°这与相矛盾.三角形内角和等于180°所以假设不成立,所求证的结论成立.

先假设结论的反面是正确的,然后通过逻辑推理,推出与公理、已证的定理、定义或已知条件相矛盾,说明假设不成立,从而得到原结论正确.这种证明方法就是——反证法

把这种不是直接从原命题的条件逐步推得命题成立的证明方法称为间接证明.注:反证法是最常见的间接证法.

一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾.因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.反证法

归纳总结

否定结论——推出矛盾——肯定结论即分三个步骤:反设—归谬—存真反设——假设命题的结论不成立;归谬——从假设出发,经过一系列正确的推理,得出矛盾;反证法的证明过程存真——由矛盾结果,断定反设不成立,从而肯定原结论成立.

归谬矛盾:(1)与已知条件矛盾.(2)与假设矛盾或自相矛盾.(3)与已有公理、定理、定义、事实矛盾.反证法的思维方法:正难则反.用反证法证明否定性命题你能说出下列结论的反面吗?a⊥b2.d是正数3.a≥04.a∥ba不垂直于bd不是正数,即d≤0a<0a不平行b万事开头难,让我们走好第一步!探究点2反证法的应用

探究新知常用的互为否定的表述方式:至多有两个至少有两个至少有三个——最多有一个——原词语否定词原词语否定词等于任意的是至少有一个都是至多有一个大于至少有n个小于至多有n个对所有x,成立对任何x,不成立

准确地作出反设(即否定结论)是非常重要的,下面是一些常见的结论的否定形式.

不是不都是不大于大于或等于一个也没有至少有两个至多有(n-1)个至少有(n+1)个存在某x,不成立存在某x,成立不等于某个2.用反证法证明命题“三角形中最多有一个是直角”时,应假设________________________________.三角形中有两个或三个角是直角

小试牛刀1.命题“△ABC中,若∠A>∠B,则a>b”的结论的否定应该是(

)A.a<bB.a≤bC.a=bD.a≥bB

当堂检测2.实数a,b,c不全为0等价于(

)A.a,b,c均不为0B.a,b,c中至多有一个为0C.a,b,c中至少有一个为0D.a,b,c中至少有一个不为0D3.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,反设正确的是(

)A.假设三内角都不大于60°B.假设三内角都大于60°C.假设三内角至多有一个大于60°D.假设三内角至多有两个大于60°B4.如果两个实数之和为正数,则这两个数(

)A.一个是正数,一个是负数B.两个都是正数C.至少有一个正数D.两个都是负数C5.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°矛盾,故假设错误;②所以一个三角形不能有两个直角;③假设△ABC中有两个直角,不妨设∠A=90°,∠B=90°.上述步骤的正确顺序为________(填序号).③①②1.如图,在△ABC中,若∠C是直角,那么∠B一定是锐角.

跟踪训练证明:假设结论不成立,则∠B是直角或钝角.当∠B是直角时,则∠B+∠C=180°,这与三角形的三个内角和等于180°矛盾;当∠B是钝角时,则∠B+∠C>180°,这与三角形的三个内角和等于180°矛盾;综上所述,假设不成立.所以∠B一定是锐角.反证法的一般步骤先假设命题的结论不成立从假设出发,经过推理得出矛盾否定假设肯定原命题分清条件和结论

总结升华宜用反证法证明的题型

(1)以否定性判断作为结论的命题.(2)某些定理的逆命题.(3)以“至多”、“至少”或“不多于”等形式陈述的命题.(4)关于“唯一性”结论的命题.(8)涉及各种“无限”结论的命题等.(7)有些基本定理或某一知识体系的初始阶段.(6)一些不等量命题的证明.(5)解决整除性问题.6.已知p3+q3=2,求证p+q≤2.【证明】假设p+q>2,那么p>2-q,所以p3>(2-q)3=8-12q+6q2-q3,将p3+q3=2代入消去p,得6q2-12q+6<0,即6(q-1)2<0.这与6(q-1)2≥0矛盾

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论