版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数列求和问题①等差数列的前n项和公式:②等比数列的前n项和公式③④⑤1.公式法即直接用求和公式,求前n项和Sn分析:通过观察,看出所求得数列实际上就是等比数列其首项为a,公比为ab,因此由题设求出a,b,再用等比数列前n项和公式求和例1:若实数a,b满足:
求:例2求和:1+(1/a)+(1/a2)+……+(1/an)解:∵1,1/a,1/a2……1/an是首项为1,公比为1/a的等比数列,∴原式=原因:上述解法错误在于,当公比1/a=1即a=1时,前n项和公式不再成立。例2求和:1+(1/a)+(1/a2)+……+(1/an)在求等比数列前n项和时,要特别注意公比q是否为1。当q不确定时要对q分q=1和q≠1两种情况讨论求解。对策:倒序相加法在教材中是推导等差数列前n项和的方法2.倒序相加法例4.求下列数列的前n项和(1)
3.分组求和法:
若数列的通项可转化为
的形式,且数列可求出前n项和则解(1):该数列的通项公式为
当a≠0且a≠1时,Sn=规律概括:如果一个数列的通项可分成两项之和(或三项之和)则可用分组求和法:在本章我们主要遇到如下两种形式的数列.
其一:通项公式为:
其二:通项公式为:例5、Sn=++……+11×313×51(2n-1)×(2n+1)[分析]:观察数列的前几项:1(2n-1)×(2n+1)=(-)212n-112n+11这时我们就能把数列的每一项裂成两项再求和,这种方法叫什么呢?裂项法11×3=(-213111)例5、Sn=++……+11×313×51(2n-1)×(2n+1)解:由通项an=1(2n-1)×(2n+1)=(-)212n-112n+11∴Sn=
(-+-+……+-)21311151312n-112n+11=(1-)212n+112n+1n=评:裂项相消法的关键就是将数列的每一项拆成二项或多项使数列中的项出现有规律的抵消项,进而达到求和的目的。4.拆项相消法(或裂项法):若数列的通项公式拆分为某数列相邻两项之差的形式即:
或()则可用如下方法求前n项和.
例6、设是公差d不为零的等差数列,满足求:的前n项和它的拆项方法你掌握了吗?常见的拆项公式有:5.错位相减法:设数列是公差为d的等差数列(d不等于零),数列是公比为q的等比数列(q不
等于1),数列满足:则的前n项和为:例7、求和Sn=1+2x+3x2+……+nxn-1(x≠0,1)[分析]这是一个等差数列{n}与一个等比数列{xn-1}的对应相乘构成的新数列,这样的数列求和该如何求呢?Sn=1+2x+3x2
+……+nxn-1①
xSn=x+2x2
+……+(n-1)xn-1+nxn②(1-x)Sn=1+x+x2+……+xn-1-
nxnn项这时等式的右边是一个等比数列的前n项和与一个式子的和,这样我们就可以化简求值。错位相减法例7、求和Sn=1+2x+3x2++nxn-1(x≠0,1)解:∵Sn=1+2x+3x2++nxn-1∴xSn=x+2x2++(n-1)xn-1+nxn∴①-②,得:(1-x)
Sn=1+x+x2++xn-1-
nxn∴Sn=1-(1+n)xn+nxn+1(1-x)21-xn1-x=-
nxn………………练习:求和Sn=1/2+3/4+5/8+……+(2n-1)/2n答案:Sn=3-2n+32n求和Sn=1/2+3/4+5/8+……+(2n-1)/2n
直接求和(公式法)等差、或等比数列用求和公式,常数列直接运算。倒序相加等差数列的求和方法错位相减数列{anbn}的求和,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 毕业旅行回忆模板
- 20XX财务年度汇报模板
- 生物学概述与方法模板
- 人体系统协作讲座模板
- 年度房产业绩报告
- 骨干幼儿教师个人学习计划
- 二零二五版农业合伙人合作入股协议书3篇
- 二零二五年管道配件及阀门购销合同协议2篇
- 二零二五版合伙人收益共享及利润分配协议范本9篇
- 盐城工业职业技术学院《外国电影史》2023-2024学年第一学期期末试卷
- 小儿甲型流感护理查房
- 雾化吸入疗法合理用药专家共识(2024版)解读
- 寒假作业(试题)2024-2025学年五年级上册数学 人教版(十二)
- 银行信息安全保密培训
- 市政道路工程交通疏解施工方案
- 2024年部编版初中七年级上册历史:部分练习题含答案
- 床旁超声监测胃残余量
- 上海市松江区市级名校2025届数学高一上期末达标检测试题含解析
- 综合实践活动教案三上
- 《新能源汽车电气设备构造与维修》项目三 新能源汽车照明与信号系统检修
- 2024年新课标《义务教育数学课程标准》测试题(附含答案)
评论
0/150
提交评论