麦克斯韦方程组_第1页
麦克斯韦方程组_第2页
麦克斯韦方程组_第3页
麦克斯韦方程组_第4页
麦克斯韦方程组_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

麦克斯韦方程组数学术语01历史背景表达形式意义方程组成适用尺度科学意义目录0305020406基本信息麦克斯韦方程组,是英国物理学家詹姆斯·克拉克·麦克斯韦在19世纪建立的一组描述电场、磁场与电荷密度、电流密度之间关系的偏微分方程。它由四个方程组成:描述电荷如何产生电场的高斯定律、论述磁单极子不存在的高斯磁定律、描述电流和时变电场怎样产生磁场的麦克斯韦-安培定律、描述时变磁场如何产生电场的法拉第感应定律。从麦克斯韦方程组,可以推论出电磁波在真空中以光速传播,并进而做出光是电磁波的猜想。麦克斯韦方程组和洛伦兹力方程是经典电磁学的基础方程。从这些基础方程的相关理论,发展出现代的电力科技与电子科技。麦克斯韦在1865年提出的最初形式的方程组由20个等式和20个变量组成。他在1873年尝试用四元数来表达,但未成功。现在所使用的数学形式是奥利弗·赫维赛德和约西亚·吉布斯于1884年以矢量分析的形式重新表达的。历史背景历史背景麦克斯韦诞生前的半个多世纪,人类对电磁现象的认识取得了很大的进展。1785年,法国物理学家C.A.库仑(CharlesA.Coulomb)在扭秤实验结果的基础上,建立了说明两个点电荷之间相互作用力的库仑定律。1820年,H.C.奥斯特(HansChristianOersted)发现电流能使磁针偏转,从而把电与磁联系起来。其后,A.M.安培(AndreMarieAmpère)研究了电流之间的相互作用力,提出了许多重要概念和安培环路定律。M.法拉第(MichaelFaraday)在很多方面有杰出贡献,特别是1831年发表的电磁感应定律,是电机、变压器等设备的重要理论基础。1845年,关于电磁现象的三个最基本的实验定律:库仑定律(1785年)、毕奥-萨伐尔定律(1820年)、法拉第电磁感应定律(1831~1845年)已被总结出来,法拉第的“电力线”和“磁力线”(现在也叫做“电场线”与“磁感线”)概念已发展成“电磁场概念”。1855年至1865年,麦克斯韦在全面地审视了库仑定律、毕奥—萨伐尔定律和法拉第定律的基础上,把数学分析方法带进了电磁学的研究领域,由此导致麦克斯韦电磁理论的诞生。在麦克斯韦之前,关于电磁现象的学说都以超距作用观念为基础,认为带电体、磁化体或载流导体之间的相互作用,都是可以超越中间媒质而直接进行并立即完成的,即认为电磁扰动的传播速度无限大。在那个时期,持不同意见的只有法拉第。他认为上述这些相互作用与中间媒质有关,是通过中间媒质的传递而进行的,即主张间递学说。方程组成方程组成麦克斯韦方程组乃是由四个方程共同组成的:

在电磁学里,麦克斯韦修正项意味着时变电场可以生成磁场,而由于法拉第感应定律,时变磁场又可以生成电场。这样,两个方程在理论上允许自我维持的电磁波传播于空间。麦克斯韦电磁场理论的要点可以归结为:①几分立的带电体或电流,它们之间的一切电的及磁的作用都是通过它们之间的中间区域传递的,不论中间区域是真空还是实体物质。②电能或磁能不仅存在于带电体、磁化体或带电流物体中,其大部分分布在周围的电磁场中。③导体构成的电路若有中断处,电路中的传导电流将由电介质中的位移电流补偿贯通,即全电流连续。且位移电流与其所产生的磁场的关系与传导电流的相同。④磁通量既无始点又无终点,即不存在磁荷。⑤光波也是电磁波。麦克斯韦方程组有两种表达方式。表达形式积分形式微分形式物性方程复数形式注记12345表达形式积分形式麦克斯韦方程组的积分形式如下:这是1873年前后,麦克斯韦提出的表述电磁场普遍规律的四个方程。其中:(1)描述了电场的性质。在一般情况下,电场可以是自由电荷的电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献。(2)描述了磁场的性质。磁场可以由传导电流激发,也可以由变化电场的位移电流所激发,它们的磁场都是涡旋场,磁感应线都是闭合线,对封闭曲面的通量无贡献。(3)描述了变化的磁场激发电场的规律。(4)描述了传导电流和变化的电场激发磁场的规律。当时,方程组就还原为静电场和稳恒磁场的方程:当,方程组就成为如下形式:麦克斯韦方程组的积分形式反映了空间某区域的电磁场量(D、E、B、H)和场源(电荷q、电流I)之间的关系微分形式在电磁场的实际应用中,经常要知道空间逐点的电磁场量和电荷、电流之间的关系。从数学形式上,就是将麦克斯韦方程组的积分形式化为微分形式。倒三角形为哈密顿算子。注意:(1)在不同的惯性参照系中,麦克斯韦方程组有同样的形式。(2)应用麦克斯韦方程组解决实际问题,还要考虑介质对电磁场的影响。例如在均匀各向同性介质中,电磁场量与介质特性量有下列关系:在非均匀介质中,还要考虑电磁场量在界面上的边值关系。在利用t=0时场量的初值条件,原则上可以求出任一时刻空间任一点的电磁场,即E(x,y,z,t)和B(x,y,z,t)。下面是高斯单位制下的麦克斯韦方程组物性方程当有介质存在时,由于电场和磁场与介质的相互影响,使电磁场量与介质的特性有关,因此上述麦克斯韦方程组在这时还不是完备的,还需要再补充描述介质(各向同性介质)性质的物性方程,分别为式中,ε、μ和σ分别是介质的绝对介电常数、绝对磁导率和导体的电导率。进一步的理论证明麦克斯韦方程组式与物性方程式一起对于决定电磁场的变化来说是一组完备的方程式。这就是说,当电荷、电流给定时,从上述方程根据初始条件(以及必要的边界条件)就可以完全决定电磁场的变化。当然,如果要讨论电磁场对带电粒子的作用以及带电粒子在电磁场中的运动,还需要洛伦兹力公式。

复数形式对于正弦时变场,可以使用复矢量将电磁场定律表示为复数形式。在复数形式的电磁场定律中,由于复数场量和源量都只是空间位置的函数,在求解时,不必再考虑它们与时间的依赖关系。因此,对讨论正弦时变场来说面采用复数形式的电磁场定律是较为方便的。注记采用不同的单位制,麦克斯韦方程组的形式会稍微有所改变,大致形式仍旧相同,只是不同的常数会出现在方程内部不同位置。国际单位制是最常使用的单位制,整个工程学领域都采用这种单位制,大多数化学家也都使用这种单位制,大学物理教科书几乎都采用这种单位制。其它常用的单位制有高斯单位制、洛伦兹-赫维赛德单位制(Lorentz-Heavisideunits)和普朗克单位制。由厘米-克-秒制衍生的高斯单位制,比较适合于教学用途,能够使得方程看起来更简单、更易懂。洛伦兹-赫维赛德单位制也是衍生于厘米-克-秒制,主要用于粒子物理学;普朗克单位制是一种自然单位制,其单位都是根据自然的性质定义,不是由人为设定。普朗克单位制是研究理论物理学非常有用的工具,能够给出很大的启示。在本页里,除非特别说明,所有方程都采用国际单位制。这里展示出麦克斯韦方程组的两种等价表述。第一种表述如下:这种表述将自由电荷和束缚电荷总和为高斯定律所需要的总电荷,又将自由电流、束缚电流和电极化电流总合为麦克斯韦-安培定律内的总电流。这种表述采用比较基础、微观的观点。这种表述可以应用于计算在真空里有限源电荷与源电流所产生的电场与磁场。但是,对于物质内部超多的电子与原子核,实际而言,无法一一纳入计算。事实上,经典电磁学也不需要这么精确的答案。第二种表述见前所述“积分形式”中的“一般形式”。适用尺度适用尺度麦克斯韦麦克斯韦方程组通常应用于各种场的“宏观平均场”。当尺度缩小至微观(microscopicscale),以至于接近单独原子大小的时侯,这些场的局部波动差异将变得无法忽略,量子现象也会开始出现。只有在宏观平均的前提下,一些物理量如物质的电容率和磁导率才会得到有意义的定义值。最重的原子核的半径大约为7飞米(1fm=10-15m)。所以,在经典电磁学里,微观尺度指的是尺寸的数量级大于10-14m。满足微观尺度,电子和原子核可以视为点电荷,微观麦克斯韦方程组成立;否则,必需将原子核内部的电荷分布纳入考量。在微观尺度计算出来的电场与磁场仍旧变化相当剧烈,空间变化的距离数量级小于10-10m,时间变化的周期数量级在10-17至10-13秒之间。因此,从微观麦克斯韦方程组,必需经过经典平均运算,才能得到平滑、连续、缓慢变化的宏观电场与宏观磁场。宏观尺度的最低极限为10-8米。这意味着电磁波的反射与折射行为可以用宏观麦克斯韦方程组来描述。以这最低极限为边长,体积为10-24立方米的立方体大约含有106个原子核和电子。这么多原子核和电子的物理行为,经过经典平均运算,足以平缓任何剧烈的涨落。根据可靠文献记载,经典平均运算只需要在空间作平均运算,不需要在时间作平均运算,也不需要考虑到原子的量子效应。

意义意义场概念的产生,也有麦克斯韦的一份功劳,这是当时物理学中一个伟大的创举,因为正是场概念的出现,使当时许多物理学家得以从牛顿“超距观念”的束缚中摆脱出来,普遍地接受了电磁作用和引力作用都是“近距作用”的思想。麦克斯韦方程组在电磁学与经典电动力学中的地位,如同牛顿运动定律在牛顿力学中的地位一样。以麦克斯韦方程组为核心的电磁理论,是经典物理学最引以自豪的成就之一。它所揭示出的电磁相互作用的完美统一,为物理学家树立了这样一种信念:物质的各种相互作用在更高层次上应该是统一的。这个理论被广泛地应用到技术领域。科学意义科学意义(一)经典场论是19世纪后期麦克斯韦在总结电磁学三大实验定律并把它与力学模型进行类比的基础上创立起来的。但麦克斯韦的主要功绩恰恰使他能够跳出经典力学框架的束缚:在物理上以“场”而不是以“力”作为基本的研究对象,在数学上引入了有别于经典数学的矢量偏微分运算符。这两条是发现电磁波方程的基础。这就是说,实际上麦克斯韦的工作已经冲破经典物理学和当时数学的框架,只是由于当时的历史条件,人们仍然只能从牛顿的微积分和经典力学的框架去理解电磁场理论。现代数学,Hilbert空间中的数学分析是在19世纪与20世纪之交的时候才出现的。而量子力学的物质波的概念则在更晚的时候才被发现,特别是对于现代数学与量子物理学之间的不可分割的数理逻辑联系至今也还没有完全被人们所理解和接受。从麦克斯韦建立电磁场理论到如今,人们一直以欧氏空间中的经典数学作为求解麦克斯韦方程组的基本方法。(二)我们从麦克斯韦方程组的产

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论