人工智能在灾害风险管理中的公平性和问责性:机遇和挑战 Fairness and accountability of AI in disaster risk management Opportunities and challenges_第1页
人工智能在灾害风险管理中的公平性和问责性:机遇和挑战 Fairness and accountability of AI in disaster risk management Opportunities and challenges_第2页
人工智能在灾害风险管理中的公平性和问责性:机遇和挑战 Fairness and accountability of AI in disaster risk management Opportunities and challenges_第3页
人工智能在灾害风险管理中的公平性和问责性:机遇和挑战 Fairness and accountability of AI in disaster risk management Opportunities and challenges_第4页
人工智能在灾害风险管理中的公平性和问责性:机遇和挑战 Fairness and accountability of AI in disaster risk management Opportunities and challenges_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ll

OPENACCESS

Perspective

FairnessandaccountabilityofAIindisaster

riskmanagement:Opportunitiesandchallenges

CarolineM.Gevaert,

1

,

*

MaryCarman,

2

BenjaminRosman,

3

YolaGeorgiadou,

4

andRobertSoden

5

1DepartmentofEarthObservationScience,FacultyITC,UniversityofTwente,Enschede,Overijssel7514AE,theNetherlands

2DepartmentofPhilosophy,FacultyofHumanities,UniversityoftheWitwatersrand,Johannesburg,Gauteng2000,SouthAfrica

3SchoolofComputerScienceandAppliedMathematics,FacultyofScience,UniversityoftheWitwatersrand,Johannesburg,Gauteng2000,SouthAfrica

4DepartmentofUrbanandRegionalPlanningandGeo-InformationManagement,FacultyITC,UniversityofTwente,Enschede,Overijssel7514AE,theNetherlands

5DepartmentofComputerScienceandSchooloftheEnvironment,UniversityofToronto,Toronto,ONM5T1P5,Canada*Correspondence:

c.m.gevaert@utwente.nl

/10.1016/j.patter.2021.100363

THEBIGGERPICTUREArtificialIntelligence(AI)isincreasinglybeingusedindisasterriskmanagementap-plicationstopredicttheeffectofupcomingdisasters,planformitigationstrategies,anddeterminewhoneedshowmuchaidafteradisasterstrikes.ThemediaisfilledwithunintendedethicalconcernsofAIalgo-rithms,suchasimagerecognitionalgorithmsnotrecognizingpersonsofcolororracistalgorithmicpredic-tionsofwhetheroffenderswillrecidivate.WeknowsuchunintendedethicalconsequencesmustplayaroleinDRMaswell,yetthereissurprisinglylittleresearchonexactlywhattheunintendedconsequencesareandwhatwecandotomitigatethem.Theaimofthisperspectiveistocallresearchersworkingonfair-ness,accountability,andtransparencytoworkwithDRMandlocalexperts—sowecanensurethatdisastermitigationandreliefisaccountable,considerslocalvalues,andisnotunintentionallybiased.

Concept:Basicprinciplesofanew

datascienceoutputobservedandreported

SUMMARY

Disasterriskmanagement(DRM)seekstohelpsocietiespreparefor,mitigate,orrecoverfromtheadverseimpactsofdisastersandclimatechange.CoretoDRMaredisasterriskmodelsthatrelyheavilyongeospatialdataaboutthenaturalandbuiltenvironments.Developersareincreasinglyturningtoartificialintelligence(AI)toimprovethequalityofthesemodels.Yet,thereisstilllittleunderstandingofhowtheextentofhiddengeo-spatialbiasesaffectsdisasterriskmodelsandhowaccountabilityrelationshipsareaffectedbytheseemergingactorsandmethods.Inmanycases,thereisalsoadisconnectbetweenthealgorithmdesignersandthecommunitieswheretheresearchisconductedoralgorithmsareimplemented.Thisperspectivehigh-lightsemergingconcernsabouttheuseofAIinDRM.Wediscusspotentialconcernsandillustratewhatmustbeconsideredfromadatascience,ethical,andsocialperspectivetoensuretheresponsibleusageofAIinthisfield.

INTRODUCTION

Climatechangeandpopulationgrowthinurbanareasareincreasingtheriskofpersonsandinfrastructuretodisasters.In2021alone,disastersaffectedmorethan98.4millionpeople,

includingmorethan15,000deathsandanestimatedeconomiclossofUSD171.3billion.

1

Disasterriskmanagement(DRM)

aimstohelpsocietiesrecoverfromdisastersandprepareforandmitigatetheimpactoffuturedisasters.GeospatialdataplayakeyroleinDRMbymappingpopulationsandinfrastruc-tureexposedtodisasters,identifyingareasatrisk,andplanning

emergencyresponses.

2

Remotelysensedimageryfromsatel-litesordronescanextractproxiestoanalyzepre-disastervulner-abilityandresilienceandpost-disasterdamageandrecovery.

3

Aswithotherdomains,DRMhasrecognizedthepotentialofarti-ficialintelligence(AI)algorithmstorapidlyandaccuratelypro-cessdata,andisnowusingAItodevelopmoreaccurateriskmodelsandprioritizethedistributionofdisasteraid.

4

DespitethegreatpotentialofAItosupportDRMprocesses,practitionersexpressconcernsregardingtheethicalandresponsibleusageofthesealgorithms.Howcanapractitionerbecertainthattheirriskmodelisnotbiasedagainstthemost

Patterns2,November12,2021ª2021TheAuthors.1ThisisanopenaccessarticleundertheCCBYlicense(

/licenses/by/4.0/

).

ll

OPENACCESS

vulnerablesocietalgroupsinacity?Howareaccountabilityrela-tionshipsindisasteraidinfluencedbytheintroductionofAIwhenalgorithmdevelopersarefarfromthedisasterandunfamiliarwiththelocalcontext?Aplethoraofguidelinesonethicalorrespon-

sibleusageofAIisemerging,eachpromotingslightlydifferentvaluesanddefinitions.See,forexample,theextensivecompar-isonofleadingguidelinesfor‘‘principled’’AIbyFjeldetal.

5

TheethicalorresponsibleusageofAIoftencirclesaroundahandfulofimportantconcepts,includingfairness,accountability,andtransparency(FAccT).Fairnessornon-discriminationgenerallyrefertotheabsenceofbiasindatasetsandalgorithms.Researchshowsthatalgorithmstrainedonbiaseddatasetsfailtorecog-nizehistoricallyexcludedgroupsinsociety(e.g.,BarocasandSelbst

6

).Accountabilityrelatestothemechanismorprocessthroughwhichaforumcanholdanactortojustifytheiractions(seeOlsonetal.,

7

pp.60–61).InanAIcontextaccountability

thenturnstodiscussionsonwhoistheactor(thedeveloperofthealgorithm?theorganizationdeployingthealgorithm?),andhowtheiractionscanbejustified.Thelatterrequirestranspar-encyorexplicability,andmuchresearchisfocusedonexactlyhowwecanshedlightontheinnerworkingsofcomplexAIalgo-rithmstoenablethisjustification.SuchconcernsregardingFAccTarebeingthoroughlyinvestigatedbysocialanddatasci-

entistsforapplicationsofAIindomainssuchascriminaljusticeandeducation,

8

butnotyetinthefieldofDRMandgeospatialsciences.

Theobjectiveofthisperspectiveistocallresearchersinter-estedinFAccTandotherethicalconsiderationsofAItolooktowardthefieldofDRM.TheperspectivefirstprovidesabriefintroductiontoFAccTresearchandthendelineatespotentialconcernsobservedbyDRMexpertstoemphasizethedemandforFAccTresearchandsolutionsintheDRMcommunity.Wethencontinuetodescribethetechnicalaspectsofgeospatialdata,whichisprominentinDRMapplications,andhowitspecu-liaritiesrequiretinkeringwiththetechnicaltoolstoauditdataandpreserveFAccTprinciplesinDRMworkflows.Thirdly,weemphasizehowDRMapplicationshighlighttheneedforinclusiv-ity,includingvulnerablepopulationsinholdingdistant,bigdataalgorithms,andinternationalcorporationstoaccount,andinclu-sivityinthewaythatFAccTresearchisconductedandvaluesaredefined.Finally,weproviderecommendationsonhowtostartintegratingthesetwofieldsmoreclosely.

FAIRNESS,ACCOUNTABILITY,ANDTRANSPARENCY

TheriseofAIhasgalvanizedtheintegrationofautomatedalgo-rithmsintodecision-makingsystems.However,thereisalsoanincreasingconcernregardingtheethicalimplicationsofthesesystems.ResearchintotheethicalaspectsofAIsystemsisknownasethicalAI,FAT,FAT/ML,FAT*,orFAccT.FATreferstothethreeconcepts:FAccT.TheadditionofMLreferstoappli-cationsrelatedtomachinelearning,and*isatypeofwildcardemphasizingthatotherethicalcomponents,suchasinclusivity,power,andjusticearealsoconsideredinthisfieldofresearch.FAccTisthelatestdenominationadoptedbyoneofthemost

influentialconferencesinthefield:theACMConferenceon

Fairness,Accountability,andTransparency(ACMFAccT).

9

ResearchinthefieldofFAccTisslightlyparadoxicalasitaims

todeveloptechnicalsolutionstoauditandensureethicalvalues

2Patterns2,November12,2021

Perspective

inAIworkflows,althoughthevaluesthemselvesareambiguousbynature.Forexample,fairnessgenerallyreferstoalackofbiasinanAIsystemagainstacertainindividualorgroup,buttherearemultipledefinitionsoffairnessutilizedintheFAccTliterature.Someadoptastatisticalapproachbasedonsimilarperformanceinclassificationmetrics,e.g.,thatdifferentculturalgroupsshouldhavethesamechancesofachievingadefinedalgo-rithmicoutput.Otherapproachestestwhetherapredefined

sensitivevariable(e.g.,gender)influencestheoutputofanalgo-rithm.

10

Tocomplicatemattersevenfurther,althoughmanydef-initionsoffairnessachievesimilarresults,theyaresensitivetodatavariabilityandsomedefinitionsmayachieveconflictingout-puts.

11

Indeed,Kleinbergetal.

12

gosofarastoprovetheoreti-callythatsomecommonlyaccepteddefinitionsoffairnessareincompatible.ItisnotthepurposeofthisperspectivetogiveanextensivecomparisonofdifferentfairnessmetricsorotherethicalvaluesresearchedintheFAccTfield.Forthis,thecuriousreaderisencouragedtoconsultexcellentreviewsonfairness(e.g.,VermaandRubin

10

),accountability(e.g.,Wieringa

13

),andtransparency(e.g.,Mittelstadtetal.

14

)intheliterature.However,forthecontextofthisperspectiveitisimportanttorecognizewhyresearchinthefieldofFAccTrequiressuchclosecollaborationbetweendatascienceandhumanities,aswellasknowledgeofthecontextinwhichthealgorithmwilloperate.

TheFAccTcommunityismadeupofresearchersfromma-chinelearning,statistics,datascience,law,andsocialsciences,aswellasinterestedindustrybodies,suchasGoogle,IBM,andMicrosoft,asillustratedbytheparticipantsintheannualACMFAccTconference.

9

Nevertheless,asignificantcritiqueofFAccTresearchingeneralisthat,evenifperfecttechnicalsolutionsforFAccTvaluescouldbeembeddedintoAIsystems,thereisgenerallyalackofunderstandingregardingthesocial,cultural,andpoliticalenvironmentinwhichthesesystemsarede-ployed.

15

,

16

Indeed,FAccTconferencesremaindominatedbyAmericaninstitutesandmainlywhitemaleauthors,

17

althoughtherearestrongeffortstoincreasediversity.Theseconcerns

highlightthetimelinessofourcallforFAccTresearcherstoconsiderinvestigationsintheDRMdomain.Thismanuscriptem-phasizesrichopportunitiesprovidedbyDRMtodevelopthetheoreticalframeworkofFAccT,newtechnicalsolutions,andboostinclusivity.

POTENTIALCONCERNSARTICULATEDBYTHEDRMCOMMUNITY

SeveralbroadcategoriesofconcernarisewhenintroducingAIintoDRM.DrawingonrecentworkintheDRMcommunity,

18

wecanhighlightthreeofthemhere.

Firstly,biasisarecurringtopicofdiscussionamongrespon-sibleAIpractitioners.GiventheglobalscopeofDRMactivities,andwidevariationsinqualityandcoverageofgeospatialdata,biasisindeedasignificantrisk.Forexample,calldetailrecordsgeneratedbymobilephonesmaybeusedtoestimatepopulationsizesbeforeandafteradisaster,

19

butmayunderestimatevulnerablepopulationswhohavenoaccesstocellphones.

20

Oftenconceivedofasstatisticalerrordrivenbychoicesaroundsamplingdatabydatascientistsandtechnicalexperts,biasintheresponsibleAIliteratureisoftenviewedmorebroadly.

21

Thus,biascanalsobetheresultofalgorithmdesignordecisions

Perspective

aroundmetricsusedtoevaluateaparticularphenomenon.Whilesometechnicalapproachestoaddressingbiasexist,completelyeliminatingbiasinalgorithmsisimpossible,and,assomehaveargued,

22

,

23

exclusivefocusonreducingbiasinAIsystems

maydistractfromother,moreimportant,interventions.Asecondconcernrelatestotransparencyandaccountability.

TheintroductionofAItechniquesandtheirassociated

complexityintodisasterriskmodelingprocessesmayreducetheabilityofgovernment,thepublic,andotherimportantstake-holderstomeaningfullyparticipateinDRM.Evenmodelersthemselveshavereportedthat,insomecircumstances,theirabilitytounderstandandevaluatetheoutputsofAImodelshasdecreasedincomparisonwithtraditionalapproachestodisasterriskmodeling.

18

,

24

Indeed,thefieldofexplainableAIwascreatedlargelytoaddressthisissue.Forexample,Behletal.

25

usedexplainableAItoinvestigatethepotentiallimitationsofanalgorithmtrainedtoprocessTwitterdatatoidentifypeo-ple’sneedsafteradisaster.However,ingeneralthe‘‘explana-tions’’providedbyexplainableAIaredissonantfromhowhumanbeingstypicallyconstructexplanations.

26

Withreducedtrans-parencyofcomplexAImodelscomesincreasedchallengesinensuringthatexpertsanddecision-makersinvolvedinDRMareaccountabletothecommunitiesthattheyserve.

27

Finally,thehypeandinflatedexpectationsthatsurroundAIatthemomentmayleadtooneormoreinterrelatedproblems.Mostdirectly,untestedorimmatureAItoolsmaybeusedinsafety-criticalsituationsforwhichtheyarenotyetready.Thismayinturndrawneededresourcesandattentionawayfrommoresuitableapproachesorencourageover-relianceontoolsthatarenotfitforpurpose.Disastersareoftenviewedasoppor-

tunitiesforinnovation,butinthehandsofuncarefulorunscrupu-

lousdevelopersthiscanbearecipeforharm.

28

Agoodexampleofavoidinghypeisgivenbyforecast-basedfinancing,intro-ducedbytheRedCrossRedCrescentmovementtoreleasedisasterresponsefundingbeforetheimpactofadisaster.Thereleaseoffundsiscontingentonthepredictedimpactofapendingdisaster,whichcanbemodeledbyAI.However,avali-dationcommitteenotonlychecksthevalidityoftheproposedAI

model,butalsowhethersimpler,expert-basedsystemswouldbemoreappropriate.

27

ADAPTATIONSOFTECHNICALSOLUTIONSTO

GEOSPATIALDATA

Takingbiasasanexample,wecanshowhowDRMapplicationscanbenefitfromthetechnicalsolutionsdevelopedbyFAccTre-searchersandhowDRMapplicationsprovideopportunitiesforFAccTresearcherstodevelopnewsolutions.DRMapplicationsoftendependongeospatialdata.Satelliteanddroneimageryprovidesnapshotsoftheworldbelowandcanbeusedtogeneratemapsofbuildingsandimportantinfrastructure.Mobilityandsocialmediadatacanprovideinsightsintothemovementofcitizens.Hazardmodels,suchasfloodmodels,showthespatialextentoftheareaatrisk.Unfortunately,boththeDRMandFAccTcommunitiespaylittleattentiontobiasesthatareembeddedingeospatialdata.

Thereisawell-knownlackofup-to-date(geospatial)datainlow-tomiddle-incomecountries(LMICs)comparedwithhigh-in-comecountries(HICs)(e.g.,theCenterforHumanitarianData

29

).

ll

OPENACCESS

OpenStreetMap(OSM)inconjunctionwithhumanitarianmap-pingeffortshaveaimedtoimprovethedisparityindataavailabil-ityofHICsversusLMICs,andyetasignificantgapremainsashumanitarianmappingeffortsseemtofocusonareasofpastdi-sasters,areascontaininglocalmappingcommunities,andareas

ofinterestforspecificstakeholders,suchasdevelopmentagencies.

30

Littleinformationisavailableforruralorunprioritizedareas.Similarly,mobilityandsocialmediadataexcludesthose

withoutadigitalfootprint,suchasdisadvantagedcommunities

withlimitedaccesstodigitaltechnology.

ManyAIalgorithmsareusedtoprocessthiskindofgeospatialdata.Backinthe1950s,methodsconsistedofspatialinterpola-tionthroughkriging(morerecently,Gaussianprocesses)orsim-pledecisiontrees.Expert-basedmachine-learningsystemsbecamepopularinthe1980sandthisshiftedtodata-drivenma-chine-learningtechniquessuchassupportvectormachinesinthe1990sandrandomforestsattheturnofthemillennium.

Thelasttenyearshavebeenheavilyinfluencedbydevelopmentsincomputervision,anddeeplearningtechniquesarenowbeingwidelyappliedtogeospatialdata.

31

Thesetechniquesandalgo-rithmsareleadingtounprecedentedclassificationaccuracies

andshowmuchpromiseforDRMapplications.However,theyalsosufferthesamevulnerabilitiesidentifiedinotherdomainsusingthesealgorithms,suchassusceptibilitytobias.

FAccTresearchersaredevelopingtechnicaltoolstoidentifyandmitigatebiasinsuchAIalgorithms.SomeofthesesolutionscandirectlybeappliedtoDRMapplications.Forexample,SureshandGuttag

32

illustratetheroleofhistoricalbias,repre-sentationbias,measurementbias,aggregationbias,evaluationbias,anddeploymentbiasinmachine-learningalgorithms.ThesesamebiasescaneasilybeidentifiedinDRMworkflows.Historicaldatausedtotrainhazardmodelsmaynottaketheim-pactsofclimatechangeintoaccount

33

(i.e.,historicalbias)andconflictingdefinitionsusedtoidentifyvulnerablepopulationsmaygrosslyunderestimatethepopulationlivinginpoverty

34

(i.e.,measurementbias).

Inothercases,adaptationsareneededwhenapplyingdevel-opedtechniquestogeospatialdataandDRMapplications.Auditingforbiasesoftendependsontheidentificationofsensi-tiveattributes.Well-knownexamplesofrepresentationbiasandevaluationbiasincludetheunderrepresentationofracesorgenderintrainingandevaluationdata.However,itisnotclearwhichtypesofgroupsmaybeunderrepresentedingeospatialdataandthushowthesedatashouldbeauditedtocheckforpo-tentialbiases.

SometimessuchsensitiveattributescanbedirectlyidentifiedinDRMapplications.Forexample,householdsurveysorotherdemographicdatathatcontainsensitivedatamaybeutilized.

Theuseofsocialmediafordisasterwarningsandpost-disaster

damageassessmentmaycontainbiasesongender,income

level,andminoritygroups.

35

Inothercases,thegeospatialdatausedforDRMdoesnotdirectlyspecifysensitiveattributesbutcanindirectlycapturein-formationthatisrelatedtosocio-economicorculturalgroups.Forexample,thebodyofresearchoninformalsettlementmap-pingoftenrelatesthephysicalcharacteristicsofbuildingstothesocio-economicstatusofitsinhabitants.Characteristicsidentifi-ableinremotelysensedimagery,suchassmallbuildings,low-qualityroofingmaterials,irregularstreetpatterns,andnarrow

Patterns2,November12,20213

Data/Actors

ll

OPENACCESS

Perspective

Newhumanitarianism/DRM

Digitalhumanitarianism

Figure1.Anoverviewoftheevolutionofhumanitarianactioninfourstages

RemotePublicaccountability

Aim:Legibility

Algorithmicaccountability

Aim:Prediction/preemption

(2)(3)tionalCommitteeoftheRedCrossincon-

flictsituations.DRMbecamepractically

synonymouswithnewhumanitarianismin

ClassicalhumanitarianismNeoclassicalhumanitarianismtheearly2000swiththedistinctionbe-

ThickaccountabilityHybridaccountabilitytweenthetwofieldsbecomingincreas-

Aim:CareofthewholepersonAim:Epistemicjusticeinglyblurredinthedigitalandalgorithmic

era,especiallyafter2010.Themergingof

Proximate(1)(4)thetwofieldswasaccompaniedbycalls

foraccountability,itselfavaluethathas

ExpertsystemsMachinelearninghaddifferentmeaningsovertime.Tracing

(Spatial)technologythehistoricalevolutionofhumanitarian

action,especiallyafteritmergedwithDRM,aswellastherelatedmeaningsof

accountabilitymayhelpusidentifyand

streetsarestronglyrelatedtoimpoverishedlivingconditions.

36

salvagevaluableconceptsfromclassicalhumanitarianism—a

Mapsproducedthroughmachinelearningcouldthereforebesymbolofglobalmoralprogressandahumanizerofthe

auditedregardingwhichtypesofobjects(suchasbuildingtypes)world

40

—intheeraofmachinelearning.

maybeunderrepresentedinadditiontothegeographicaldistri-

Figure1

capturesfourstagesintheevolutionofhumanitarian

butionofthetrainingdata.Closecommunicationwithstake-action.Thehorizontalaxisrangesfromexpertsystemsrepli-

holdersandtheDRMapplicationwoulddefinewhichphysicalcatinghumandecisionrulestomachinelearningthatgenerates

characteristicsorobjectsshouldbeconsideredaspossiblypredictivemodelsusingtechniquessuchasprobabilistic

sensitive.reasoning.Weusetheterm‘‘expert’’broadlytorefertoanexpert

Anotherimportantfactorrelatestothedistanceoftheremotenotasaspecialkindofpersonbuttoeverypersonasaspecial

mapperfromthelocalcontextandthepowerbiasindecidingkindofexpert,especiallywithrespecttotheirownproblems.

41

whatistobemapped.ResearchbyLMICsisgrosslyunderrep-Theverticalaxisrangesfromactorsinface-to-faceproximity

resentedintheDRMresearchcommunity.

37

Similarly,thewithbeneficiariestoactorsveryremotefrombeneficiaries—for

perceptionofwhichtypeofinformationisimportantforaddress-example,corporatephilanthropists,commercialgeospatialand

ingDRMissuesisoftendefinedinHICsandmayoverlookimpor-mobilephonecompanies,self-organizingvoluntarynetworks

tantlocalnormsandcontexts,

38

whicharecrucialforsolvingofdigitalhumanitarians,universities,andinternationalspace

complexsocialissues.Visualanalysesofdroneimageryinagencies.Thesameverticalaxisrangesfromdatacollectedin

slumareasbylocalresidentsillustratesthattheperceptionsofface-to-faceinteractionsinthefieldtodatacollectedbyremote

sensitiveobjectsvariedgreatlyindifferentareas

39

andempha-digitalhumanitarians,satellites,drones,mobilephonecom-

sizesthatinterpretingremotesensingimageryiscontextdepen-panies,andthelike.Thetwoaxesspanaspacethatallowsus

dent.Thelackofunderstandingoflocalcontextmayexcludetoconceptualizetheevolutionofhumanitarianactionovertime.

localassetsandvaluesfrombeingrepresentedingeospatialInclassicalhumanitarianism(cell1)theaimisthe‘‘careofthe

datautilizedforDRMandthusinhibitstheabilityofthesedatawholehumanperson,allofherorhim.’’

42

Thethicklyaccount-

tosupportthedevelopmentoflocallyeffectivemitigationablehumanitarianhasempathyandcompassionforvictimsof

measures.crises,makesherselfvulnerableandreachableinthefield,

TheexampleofbiasthusillustratesbothhowDRMapplica-mustearntherespectofvictimsandunderstandothers’

tionscanbenefitfromthetechnicalsolutionsdevelopedbysuffering.Newhumanitarianism(cell2)foregroundspublic

FAccTresearchersandhowDRMapplicationsprovideopportu-accountability—therightofempoweredcitizenstoholdstateac-

nitiesforFAccTresearcherstodevelopnewsolutions.Weturntorstoaccountforfailurestomaketheterritoryandthepeople

nowtoconsideringhowquestionsofaccountabilityandinclusiv-legibleandgovernancerulesenforceable,forwhendisaster

itytieinwithDRM,firstthroughthelensofhumanitarianismandstrikes.DRMscholarsdefinepublicaccountabilityas:

Arelationshipbetweenanactorandaforum,inwhich(a)

theactorhasanobligationtoexplainandjustifyhisorher

plansofactionand/orconduct,(b)theforummaypose

questions,requiremoreinformation,solicitotherviews,

andpassjudgement,and(c)theactormayseepositive

ornegativeformaland/orinformalconsequencesasa

result(Olsonetal.,

7

p.61).

thenbytakingastepbacktoconsidertheverywayinwhich

valuesaredefined.Again,weaimtohighlighttheinterplay

betweenFAccTconsiderationsandDRM.

ACCOUNTABILITYINNEOCLASSICAL

HUMANITARIANISM:EPISTEMICJUSTICE

DRMasafieldofresearchandpracticeistheprogenyofclas-

sicalhumanitarianism,whichstandsforthelife-savingreliefThe2010Haitiearthquakeisacaseinpoint.AsOlsonetal.

7

assistanceandprotectionhistoricallyprovidedbytheInterna-argue,t

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论