版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ll
OPENACCESS
Perspective
FairnessandaccountabilityofAIindisaster
riskmanagement:Opportunitiesandchallenges
CarolineM.Gevaert,
1
,
*
MaryCarman,
2
BenjaminRosman,
3
YolaGeorgiadou,
4
andRobertSoden
5
1DepartmentofEarthObservationScience,FacultyITC,UniversityofTwente,Enschede,Overijssel7514AE,theNetherlands
2DepartmentofPhilosophy,FacultyofHumanities,UniversityoftheWitwatersrand,Johannesburg,Gauteng2000,SouthAfrica
3SchoolofComputerScienceandAppliedMathematics,FacultyofScience,UniversityoftheWitwatersrand,Johannesburg,Gauteng2000,SouthAfrica
4DepartmentofUrbanandRegionalPlanningandGeo-InformationManagement,FacultyITC,UniversityofTwente,Enschede,Overijssel7514AE,theNetherlands
5DepartmentofComputerScienceandSchooloftheEnvironment,UniversityofToronto,Toronto,ONM5T1P5,Canada*Correspondence:
c.m.gevaert@utwente.nl
/10.1016/j.patter.2021.100363
THEBIGGERPICTUREArtificialIntelligence(AI)isincreasinglybeingusedindisasterriskmanagementap-plicationstopredicttheeffectofupcomingdisasters,planformitigationstrategies,anddeterminewhoneedshowmuchaidafteradisasterstrikes.ThemediaisfilledwithunintendedethicalconcernsofAIalgo-rithms,suchasimagerecognitionalgorithmsnotrecognizingpersonsofcolororracistalgorithmicpredic-tionsofwhetheroffenderswillrecidivate.WeknowsuchunintendedethicalconsequencesmustplayaroleinDRMaswell,yetthereissurprisinglylittleresearchonexactlywhattheunintendedconsequencesareandwhatwecandotomitigatethem.Theaimofthisperspectiveistocallresearchersworkingonfair-ness,accountability,andtransparencytoworkwithDRMandlocalexperts—sowecanensurethatdisastermitigationandreliefisaccountable,considerslocalvalues,andisnotunintentionallybiased.
Concept:Basicprinciplesofanew
datascienceoutputobservedandreported
SUMMARY
Disasterriskmanagement(DRM)seekstohelpsocietiespreparefor,mitigate,orrecoverfromtheadverseimpactsofdisastersandclimatechange.CoretoDRMaredisasterriskmodelsthatrelyheavilyongeospatialdataaboutthenaturalandbuiltenvironments.Developersareincreasinglyturningtoartificialintelligence(AI)toimprovethequalityofthesemodels.Yet,thereisstilllittleunderstandingofhowtheextentofhiddengeo-spatialbiasesaffectsdisasterriskmodelsandhowaccountabilityrelationshipsareaffectedbytheseemergingactorsandmethods.Inmanycases,thereisalsoadisconnectbetweenthealgorithmdesignersandthecommunitieswheretheresearchisconductedoralgorithmsareimplemented.Thisperspectivehigh-lightsemergingconcernsabouttheuseofAIinDRM.Wediscusspotentialconcernsandillustratewhatmustbeconsideredfromadatascience,ethical,andsocialperspectivetoensuretheresponsibleusageofAIinthisfield.
INTRODUCTION
Climatechangeandpopulationgrowthinurbanareasareincreasingtheriskofpersonsandinfrastructuretodisasters.In2021alone,disastersaffectedmorethan98.4millionpeople,
includingmorethan15,000deathsandanestimatedeconomiclossofUSD171.3billion.
1
Disasterriskmanagement(DRM)
aimstohelpsocietiesrecoverfromdisastersandprepareforandmitigatetheimpactoffuturedisasters.GeospatialdataplayakeyroleinDRMbymappingpopulationsandinfrastruc-tureexposedtodisasters,identifyingareasatrisk,andplanning
emergencyresponses.
2
Remotelysensedimageryfromsatel-litesordronescanextractproxiestoanalyzepre-disastervulner-abilityandresilienceandpost-disasterdamageandrecovery.
3
Aswithotherdomains,DRMhasrecognizedthepotentialofarti-ficialintelligence(AI)algorithmstorapidlyandaccuratelypro-cessdata,andisnowusingAItodevelopmoreaccurateriskmodelsandprioritizethedistributionofdisasteraid.
4
DespitethegreatpotentialofAItosupportDRMprocesses,practitionersexpressconcernsregardingtheethicalandresponsibleusageofthesealgorithms.Howcanapractitionerbecertainthattheirriskmodelisnotbiasedagainstthemost
Patterns2,November12,2021ª2021TheAuthors.1ThisisanopenaccessarticleundertheCCBYlicense(
/licenses/by/4.0/
).
ll
OPENACCESS
vulnerablesocietalgroupsinacity?Howareaccountabilityrela-tionshipsindisasteraidinfluencedbytheintroductionofAIwhenalgorithmdevelopersarefarfromthedisasterandunfamiliarwiththelocalcontext?Aplethoraofguidelinesonethicalorrespon-
sibleusageofAIisemerging,eachpromotingslightlydifferentvaluesanddefinitions.See,forexample,theextensivecompar-isonofleadingguidelinesfor‘‘principled’’AIbyFjeldetal.
5
TheethicalorresponsibleusageofAIoftencirclesaroundahandfulofimportantconcepts,includingfairness,accountability,andtransparency(FAccT).Fairnessornon-discriminationgenerallyrefertotheabsenceofbiasindatasetsandalgorithms.Researchshowsthatalgorithmstrainedonbiaseddatasetsfailtorecog-nizehistoricallyexcludedgroupsinsociety(e.g.,BarocasandSelbst
6
).Accountabilityrelatestothemechanismorprocessthroughwhichaforumcanholdanactortojustifytheiractions(seeOlsonetal.,
7
pp.60–61).InanAIcontextaccountability
thenturnstodiscussionsonwhoistheactor(thedeveloperofthealgorithm?theorganizationdeployingthealgorithm?),andhowtheiractionscanbejustified.Thelatterrequirestranspar-encyorexplicability,andmuchresearchisfocusedonexactlyhowwecanshedlightontheinnerworkingsofcomplexAIalgo-rithmstoenablethisjustification.SuchconcernsregardingFAccTarebeingthoroughlyinvestigatedbysocialanddatasci-
entistsforapplicationsofAIindomainssuchascriminaljusticeandeducation,
8
butnotyetinthefieldofDRMandgeospatialsciences.
Theobjectiveofthisperspectiveistocallresearchersinter-estedinFAccTandotherethicalconsiderationsofAItolooktowardthefieldofDRM.TheperspectivefirstprovidesabriefintroductiontoFAccTresearchandthendelineatespotentialconcernsobservedbyDRMexpertstoemphasizethedemandforFAccTresearchandsolutionsintheDRMcommunity.Wethencontinuetodescribethetechnicalaspectsofgeospatialdata,whichisprominentinDRMapplications,andhowitspecu-liaritiesrequiretinkeringwiththetechnicaltoolstoauditdataandpreserveFAccTprinciplesinDRMworkflows.Thirdly,weemphasizehowDRMapplicationshighlighttheneedforinclusiv-ity,includingvulnerablepopulationsinholdingdistant,bigdataalgorithms,andinternationalcorporationstoaccount,andinclu-sivityinthewaythatFAccTresearchisconductedandvaluesaredefined.Finally,weproviderecommendationsonhowtostartintegratingthesetwofieldsmoreclosely.
FAIRNESS,ACCOUNTABILITY,ANDTRANSPARENCY
TheriseofAIhasgalvanizedtheintegrationofautomatedalgo-rithmsintodecision-makingsystems.However,thereisalsoanincreasingconcernregardingtheethicalimplicationsofthesesystems.ResearchintotheethicalaspectsofAIsystemsisknownasethicalAI,FAT,FAT/ML,FAT*,orFAccT.FATreferstothethreeconcepts:FAccT.TheadditionofMLreferstoappli-cationsrelatedtomachinelearning,and*isatypeofwildcardemphasizingthatotherethicalcomponents,suchasinclusivity,power,andjusticearealsoconsideredinthisfieldofresearch.FAccTisthelatestdenominationadoptedbyoneofthemost
influentialconferencesinthefield:theACMConferenceon
Fairness,Accountability,andTransparency(ACMFAccT).
9
ResearchinthefieldofFAccTisslightlyparadoxicalasitaims
todeveloptechnicalsolutionstoauditandensureethicalvalues
2Patterns2,November12,2021
Perspective
inAIworkflows,althoughthevaluesthemselvesareambiguousbynature.Forexample,fairnessgenerallyreferstoalackofbiasinanAIsystemagainstacertainindividualorgroup,buttherearemultipledefinitionsoffairnessutilizedintheFAccTliterature.Someadoptastatisticalapproachbasedonsimilarperformanceinclassificationmetrics,e.g.,thatdifferentculturalgroupsshouldhavethesamechancesofachievingadefinedalgo-rithmicoutput.Otherapproachestestwhetherapredefined
sensitivevariable(e.g.,gender)influencestheoutputofanalgo-rithm.
10
Tocomplicatemattersevenfurther,althoughmanydef-initionsoffairnessachievesimilarresults,theyaresensitivetodatavariabilityandsomedefinitionsmayachieveconflictingout-puts.
11
Indeed,Kleinbergetal.
12
gosofarastoprovetheoreti-callythatsomecommonlyaccepteddefinitionsoffairnessareincompatible.ItisnotthepurposeofthisperspectivetogiveanextensivecomparisonofdifferentfairnessmetricsorotherethicalvaluesresearchedintheFAccTfield.Forthis,thecuriousreaderisencouragedtoconsultexcellentreviewsonfairness(e.g.,VermaandRubin
10
),accountability(e.g.,Wieringa
13
),andtransparency(e.g.,Mittelstadtetal.
14
)intheliterature.However,forthecontextofthisperspectiveitisimportanttorecognizewhyresearchinthefieldofFAccTrequiressuchclosecollaborationbetweendatascienceandhumanities,aswellasknowledgeofthecontextinwhichthealgorithmwilloperate.
TheFAccTcommunityismadeupofresearchersfromma-chinelearning,statistics,datascience,law,andsocialsciences,aswellasinterestedindustrybodies,suchasGoogle,IBM,andMicrosoft,asillustratedbytheparticipantsintheannualACMFAccTconference.
9
Nevertheless,asignificantcritiqueofFAccTresearchingeneralisthat,evenifperfecttechnicalsolutionsforFAccTvaluescouldbeembeddedintoAIsystems,thereisgenerallyalackofunderstandingregardingthesocial,cultural,andpoliticalenvironmentinwhichthesesystemsarede-ployed.
15
,
16
Indeed,FAccTconferencesremaindominatedbyAmericaninstitutesandmainlywhitemaleauthors,
17
althoughtherearestrongeffortstoincreasediversity.Theseconcerns
highlightthetimelinessofourcallforFAccTresearcherstoconsiderinvestigationsintheDRMdomain.Thismanuscriptem-phasizesrichopportunitiesprovidedbyDRMtodevelopthetheoreticalframeworkofFAccT,newtechnicalsolutions,andboostinclusivity.
POTENTIALCONCERNSARTICULATEDBYTHEDRMCOMMUNITY
SeveralbroadcategoriesofconcernarisewhenintroducingAIintoDRM.DrawingonrecentworkintheDRMcommunity,
18
wecanhighlightthreeofthemhere.
Firstly,biasisarecurringtopicofdiscussionamongrespon-sibleAIpractitioners.GiventheglobalscopeofDRMactivities,andwidevariationsinqualityandcoverageofgeospatialdata,biasisindeedasignificantrisk.Forexample,calldetailrecordsgeneratedbymobilephonesmaybeusedtoestimatepopulationsizesbeforeandafteradisaster,
19
butmayunderestimatevulnerablepopulationswhohavenoaccesstocellphones.
20
Oftenconceivedofasstatisticalerrordrivenbychoicesaroundsamplingdatabydatascientistsandtechnicalexperts,biasintheresponsibleAIliteratureisoftenviewedmorebroadly.
21
Thus,biascanalsobetheresultofalgorithmdesignordecisions
Perspective
aroundmetricsusedtoevaluateaparticularphenomenon.Whilesometechnicalapproachestoaddressingbiasexist,completelyeliminatingbiasinalgorithmsisimpossible,and,assomehaveargued,
22
,
23
exclusivefocusonreducingbiasinAIsystems
maydistractfromother,moreimportant,interventions.Asecondconcernrelatestotransparencyandaccountability.
TheintroductionofAItechniquesandtheirassociated
complexityintodisasterriskmodelingprocessesmayreducetheabilityofgovernment,thepublic,andotherimportantstake-holderstomeaningfullyparticipateinDRM.Evenmodelersthemselveshavereportedthat,insomecircumstances,theirabilitytounderstandandevaluatetheoutputsofAImodelshasdecreasedincomparisonwithtraditionalapproachestodisasterriskmodeling.
18
,
24
Indeed,thefieldofexplainableAIwascreatedlargelytoaddressthisissue.Forexample,Behletal.
25
usedexplainableAItoinvestigatethepotentiallimitationsofanalgorithmtrainedtoprocessTwitterdatatoidentifypeo-ple’sneedsafteradisaster.However,ingeneralthe‘‘explana-tions’’providedbyexplainableAIaredissonantfromhowhumanbeingstypicallyconstructexplanations.
26
Withreducedtrans-parencyofcomplexAImodelscomesincreasedchallengesinensuringthatexpertsanddecision-makersinvolvedinDRMareaccountabletothecommunitiesthattheyserve.
27
Finally,thehypeandinflatedexpectationsthatsurroundAIatthemomentmayleadtooneormoreinterrelatedproblems.Mostdirectly,untestedorimmatureAItoolsmaybeusedinsafety-criticalsituationsforwhichtheyarenotyetready.Thismayinturndrawneededresourcesandattentionawayfrommoresuitableapproachesorencourageover-relianceontoolsthatarenotfitforpurpose.Disastersareoftenviewedasoppor-
tunitiesforinnovation,butinthehandsofuncarefulorunscrupu-
lousdevelopersthiscanbearecipeforharm.
28
Agoodexampleofavoidinghypeisgivenbyforecast-basedfinancing,intro-ducedbytheRedCrossRedCrescentmovementtoreleasedisasterresponsefundingbeforetheimpactofadisaster.Thereleaseoffundsiscontingentonthepredictedimpactofapendingdisaster,whichcanbemodeledbyAI.However,avali-dationcommitteenotonlychecksthevalidityoftheproposedAI
model,butalsowhethersimpler,expert-basedsystemswouldbemoreappropriate.
27
ADAPTATIONSOFTECHNICALSOLUTIONSTO
GEOSPATIALDATA
Takingbiasasanexample,wecanshowhowDRMapplicationscanbenefitfromthetechnicalsolutionsdevelopedbyFAccTre-searchersandhowDRMapplicationsprovideopportunitiesforFAccTresearcherstodevelopnewsolutions.DRMapplicationsoftendependongeospatialdata.Satelliteanddroneimageryprovidesnapshotsoftheworldbelowandcanbeusedtogeneratemapsofbuildingsandimportantinfrastructure.Mobilityandsocialmediadatacanprovideinsightsintothemovementofcitizens.Hazardmodels,suchasfloodmodels,showthespatialextentoftheareaatrisk.Unfortunately,boththeDRMandFAccTcommunitiespaylittleattentiontobiasesthatareembeddedingeospatialdata.
Thereisawell-knownlackofup-to-date(geospatial)datainlow-tomiddle-incomecountries(LMICs)comparedwithhigh-in-comecountries(HICs)(e.g.,theCenterforHumanitarianData
29
).
ll
OPENACCESS
OpenStreetMap(OSM)inconjunctionwithhumanitarianmap-pingeffortshaveaimedtoimprovethedisparityindataavailabil-ityofHICsversusLMICs,andyetasignificantgapremainsashumanitarianmappingeffortsseemtofocusonareasofpastdi-sasters,areascontaininglocalmappingcommunities,andareas
ofinterestforspecificstakeholders,suchasdevelopmentagencies.
30
Littleinformationisavailableforruralorunprioritizedareas.Similarly,mobilityandsocialmediadataexcludesthose
withoutadigitalfootprint,suchasdisadvantagedcommunities
withlimitedaccesstodigitaltechnology.
ManyAIalgorithmsareusedtoprocessthiskindofgeospatialdata.Backinthe1950s,methodsconsistedofspatialinterpola-tionthroughkriging(morerecently,Gaussianprocesses)orsim-pledecisiontrees.Expert-basedmachine-learningsystemsbecamepopularinthe1980sandthisshiftedtodata-drivenma-chine-learningtechniquessuchassupportvectormachinesinthe1990sandrandomforestsattheturnofthemillennium.
Thelasttenyearshavebeenheavilyinfluencedbydevelopmentsincomputervision,anddeeplearningtechniquesarenowbeingwidelyappliedtogeospatialdata.
31
Thesetechniquesandalgo-rithmsareleadingtounprecedentedclassificationaccuracies
andshowmuchpromiseforDRMapplications.However,theyalsosufferthesamevulnerabilitiesidentifiedinotherdomainsusingthesealgorithms,suchassusceptibilitytobias.
FAccTresearchersaredevelopingtechnicaltoolstoidentifyandmitigatebiasinsuchAIalgorithms.SomeofthesesolutionscandirectlybeappliedtoDRMapplications.Forexample,SureshandGuttag
32
illustratetheroleofhistoricalbias,repre-sentationbias,measurementbias,aggregationbias,evaluationbias,anddeploymentbiasinmachine-learningalgorithms.ThesesamebiasescaneasilybeidentifiedinDRMworkflows.Historicaldatausedtotrainhazardmodelsmaynottaketheim-pactsofclimatechangeintoaccount
33
(i.e.,historicalbias)andconflictingdefinitionsusedtoidentifyvulnerablepopulationsmaygrosslyunderestimatethepopulationlivinginpoverty
34
(i.e.,measurementbias).
Inothercases,adaptationsareneededwhenapplyingdevel-opedtechniquestogeospatialdataandDRMapplications.Auditingforbiasesoftendependsontheidentificationofsensi-tiveattributes.Well-knownexamplesofrepresentationbiasandevaluationbiasincludetheunderrepresentationofracesorgenderintrainingandevaluationdata.However,itisnotclearwhichtypesofgroupsmaybeunderrepresentedingeospatialdataandthushowthesedatashouldbeauditedtocheckforpo-tentialbiases.
SometimessuchsensitiveattributescanbedirectlyidentifiedinDRMapplications.Forexample,householdsurveysorotherdemographicdatathatcontainsensitivedatamaybeutilized.
Theuseofsocialmediafordisasterwarningsandpost-disaster
damageassessmentmaycontainbiasesongender,income
level,andminoritygroups.
35
Inothercases,thegeospatialdatausedforDRMdoesnotdirectlyspecifysensitiveattributesbutcanindirectlycapturein-formationthatisrelatedtosocio-economicorculturalgroups.Forexample,thebodyofresearchoninformalsettlementmap-pingoftenrelatesthephysicalcharacteristicsofbuildingstothesocio-economicstatusofitsinhabitants.Characteristicsidentifi-ableinremotelysensedimagery,suchassmallbuildings,low-qualityroofingmaterials,irregularstreetpatterns,andnarrow
Patterns2,November12,20213
Data/Actors
ll
OPENACCESS
Perspective
Newhumanitarianism/DRM
Digitalhumanitarianism
Figure1.Anoverviewoftheevolutionofhumanitarianactioninfourstages
RemotePublicaccountability
Aim:Legibility
Algorithmicaccountability
Aim:Prediction/preemption
(2)(3)tionalCommitteeoftheRedCrossincon-
flictsituations.DRMbecamepractically
synonymouswithnewhumanitarianismin
ClassicalhumanitarianismNeoclassicalhumanitarianismtheearly2000swiththedistinctionbe-
ThickaccountabilityHybridaccountabilitytweenthetwofieldsbecomingincreas-
Aim:CareofthewholepersonAim:Epistemicjusticeinglyblurredinthedigitalandalgorithmic
era,especiallyafter2010.Themergingof
Proximate(1)(4)thetwofieldswasaccompaniedbycalls
foraccountability,itselfavaluethathas
ExpertsystemsMachinelearninghaddifferentmeaningsovertime.Tracing
(Spatial)technologythehistoricalevolutionofhumanitarian
action,especiallyafteritmergedwithDRM,aswellastherelatedmeaningsof
accountabilitymayhelpusidentifyand
streetsarestronglyrelatedtoimpoverishedlivingconditions.
36
salvagevaluableconceptsfromclassicalhumanitarianism—a
Mapsproducedthroughmachinelearningcouldthereforebesymbolofglobalmoralprogressandahumanizerofthe
auditedregardingwhichtypesofobjects(suchasbuildingtypes)world
40
—intheeraofmachinelearning.
maybeunderrepresentedinadditiontothegeographicaldistri-
Figure1
capturesfourstagesintheevolutionofhumanitarian
butionofthetrainingdata.Closecommunicationwithstake-action.Thehorizontalaxisrangesfromexpertsystemsrepli-
holdersandtheDRMapplicationwoulddefinewhichphysicalcatinghumandecisionrulestomachinelearningthatgenerates
characteristicsorobjectsshouldbeconsideredaspossiblypredictivemodelsusingtechniquessuchasprobabilistic
sensitive.reasoning.Weusetheterm‘‘expert’’broadlytorefertoanexpert
Anotherimportantfactorrelatestothedistanceoftheremotenotasaspecialkindofpersonbuttoeverypersonasaspecial
mapperfromthelocalcontextandthepowerbiasindecidingkindofexpert,especiallywithrespecttotheirownproblems.
41
whatistobemapped.ResearchbyLMICsisgrosslyunderrep-Theverticalaxisrangesfromactorsinface-to-faceproximity
resentedintheDRMresearchcommunity.
37
Similarly,thewithbeneficiariestoactorsveryremotefrombeneficiaries—for
perceptionofwhichtypeofinformationisimportantforaddress-example,corporatephilanthropists,commercialgeospatialand
ingDRMissuesisoftendefinedinHICsandmayoverlookimpor-mobilephonecompanies,self-organizingvoluntarynetworks
tantlocalnormsandcontexts,
38
whicharecrucialforsolvingofdigitalhumanitarians,universities,andinternationalspace
complexsocialissues.Visualanalysesofdroneimageryinagencies.Thesameverticalaxisrangesfromdatacollectedin
slumareasbylocalresidentsillustratesthattheperceptionsofface-to-faceinteractionsinthefieldtodatacollectedbyremote
sensitiveobjectsvariedgreatlyindifferentareas
39
andempha-digitalhumanitarians,satellites,drones,mobilephonecom-
sizesthatinterpretingremotesensingimageryiscontextdepen-panies,andthelike.Thetwoaxesspanaspacethatallowsus
dent.Thelackofunderstandingoflocalcontextmayexcludetoconceptualizetheevolutionofhumanitarianactionovertime.
localassetsandvaluesfrombeingrepresentedingeospatialInclassicalhumanitarianism(cell1)theaimisthe‘‘careofthe
datautilizedforDRMandthusinhibitstheabilityofthesedatawholehumanperson,allofherorhim.’’
42
Thethicklyaccount-
tosupportthedevelopmentoflocallyeffectivemitigationablehumanitarianhasempathyandcompassionforvictimsof
measures.crises,makesherselfvulnerableandreachableinthefield,
TheexampleofbiasthusillustratesbothhowDRMapplica-mustearntherespectofvictimsandunderstandothers’
tionscanbenefitfromthetechnicalsolutionsdevelopedbysuffering.Newhumanitarianism(cell2)foregroundspublic
FAccTresearchersandhowDRMapplicationsprovideopportu-accountability—therightofempoweredcitizenstoholdstateac-
nitiesforFAccTresearcherstodevelopnewsolutions.Weturntorstoaccountforfailurestomaketheterritoryandthepeople
nowtoconsideringhowquestionsofaccountabilityandinclusiv-legibleandgovernancerulesenforceable,forwhendisaster
itytieinwithDRM,firstthroughthelensofhumanitarianismandstrikes.DRMscholarsdefinepublicaccountabilityas:
Arelationshipbetweenanactorandaforum,inwhich(a)
theactorhasanobligationtoexplainandjustifyhisorher
plansofactionand/orconduct,(b)theforummaypose
questions,requiremoreinformation,solicitotherviews,
andpassjudgement,and(c)theactormayseepositive
ornegativeformaland/orinformalconsequencesasa
result(Olsonetal.,
7
p.61).
thenbytakingastepbacktoconsidertheverywayinwhich
valuesaredefined.Again,weaimtohighlighttheinterplay
betweenFAccTconsiderationsandDRM.
ACCOUNTABILITYINNEOCLASSICAL
HUMANITARIANISM:EPISTEMICJUSTICE
DRMasafieldofresearchandpracticeistheprogenyofclas-
sicalhumanitarianism,whichstandsforthelife-savingreliefThe2010Haitiearthquakeisacaseinpoint.AsOlsonetal.
7
assistanceandprotectionhistoricallyprovidedbytheInterna-argue,t
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论