




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
管理科学决策分析Chapter12-DecisionAnalysis1第一页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
2ComponentsofDecisionMakingDecisionMakingwithoutProbabilitiesDecisionMakingwithProbabilitiesDecisionAnalysiswithAdditionalInformationUtilityChapterTopics第二页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
3Table12.1PayoffTableAstateofnatureisanactualeventthatmayoccurinthefuture.Apayofftableisameansoforganizingadecisionsituation,presentingthepayoffsfromdifferentdecisionsgiventhevariousstatesofnature.DecisionAnalysisComponentsofDecisionMaking第三页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
4Decisionsituation:Decision-MakingCriteria:maximax,maximin,minimax,minimaxregret,Hurwicz,andequallikelihood
Table12.2PayoffTablefortheRealEstateInvestmentsDecisionAnalysisDecisionMakingwithoutProbabilities第四页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
5Table12.3PayoffTableIllustratingaMaximaxDecisionInthemaximaxcriterionthedecisionmakerselectsthedecisionthatwillresultinthemaximumofmaximumpayoffs;anoptimisticcriterion.DecisionMakingwithoutProbabilitiesMaximaxCriterion第五页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
6Table12.4PayoffTableIllustratingaMaximinDecisionInthemaximincriterionthedecisionmakerselectsthedecisionthatwillreflectthemaximumoftheminimumpayoffs;apessimisticcriterion.DecisionMakingwithoutProbabilitiesMaximinCriterion第六页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
7Table12.6
RegretTableIllustratingtheMinimaxRegretDecisionRegretisthedifferencebetweenthepayofffromthebestdecisionandallotherdecisionpayoffs.Thedecisionmakerattemptstoavoidregretbyselectingthedecisionalternativethatminimizesthemaximumregret.DecisionMakingwithoutProbabilitiesMinimaxRegretCriterion第七页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
8TheHurwiczcriterionisacompromisebetweenthemaximaxandmaximincriterion.Acoefficientofoptimism,,isameasureofthedecisionmaker’soptimism.TheHurwiczcriterionmultipliesthebestpayoffbyandtheworstpayoffby1-.,foreachdecision,andthebestresultisselected.
Decision
Values
Apartmentbuilding$50,000(.4)+30,000(.6)=38,000 Officebuilding$100,000(.4)-40,000(.6)=16,000 Warehouse$30,000(.4)+10,000(.6)=18,000DecisionMakingwithoutProbabilitiesHurwiczCriterion第八页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
9Theequallikelihood(orLaplace)criterionmultipliesthedecisionpayoffforeachstateofnaturebyanequalweight,thusassumingthatthestatesofnatureareequallylikelytooccur.
Decision
Values
Apartmentbuilding$50,000(.5)+30,000(.5)=40,000 Officebuilding$100,000(.5)-40,000(.5)=30,000 Warehouse$30,000(.5)+10,000(.5)=20,000DecisionMakingwithoutProbabilitiesEqualLikelihoodCriterion第九页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
10Adominantdecisionisonethathasabetterpayoffthananotherdecisionundereachstateofnature.Theappropriatecriterionisdependentonthe“risk”personalityandphilosophyofthedecisionmaker.
Criterion
Decision(Purchase) Maximax Officebuilding Maximin Apartmentbuilding Minimaxregret Apartmentbuilding Hurwicz Apartmentbuilding Equallikelihood ApartmentbuildingDecisionMakingwithoutProbabilitiesSummaryofCriteriaResults第十页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
11Exhibit12.1DecisionMakingwithoutProbabilitiesSolutionwithQMforWindows(1of3)第十一页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
12Exhibit12.2DecisionMakingwithoutProbabilitiesSolutionwithQMforWindows(2of3)第十二页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
13Exhibit12.3DecisionMakingwithoutProbabilitiesSolutionwithQMforWindows(3of3)第十三页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
14Expectedvalueiscomputedbymultiplyingeachdecisionoutcomeundereachstateofnaturebytheprobabilityofitsoccurrence. EV(Apartment)=$50,000(.6)+30,000(.4)=42,000 EV(Office)=$100,000(.6)-40,000(.4)=44,000 EV(Warehouse)=$30,000(.6)+10,000(.4)=22,000Table12.7PayofftablewithProbabilitiesforStatesofNatureDecisionMakingwithProbabilitiesExpectedValue第十四页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
15Theexpectedopportunitylossistheexpectedvalueoftheregretforeachdecision.Theexpectedvalueandexpectedopportunitylosscriterionresultinthesamedecision.
EOL(Apartment)=$50,000(.6)+0(.4)=30,000 EOL(Office)=$0(.6)+70,000(.4)=28,000 EOL(Warehouse)=$70,000(.6)+20,000(.4)=50,000Table12.8Regret(OpportunityLoss)TablewithProbabilitiesforStatesofNatureDecisionMakingwithProbabilitiesExpectedOpportunityLoss第十五页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
16Exhibit12.4ExpectedValueProblemsSolutionwithQMforWindows第十六页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
17Exhibit12.5ExpectedValueProblemsSolutionwithExcelandExcelQM(1of2)第十七页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
18Exhibit12.6ExpectedValueProblemsSolutionwithExcelandExcelQM(2of2)第十八页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
19Theexpectedvalueofperfectinformation(EVPI)isthemaximumamountadecisionmakerwouldpayforadditionalinformation.EVPIequalstheexpectedvaluegivenperfectinformationminustheexpectedvaluewithoutperfectinformation.EVPIequalstheexpectedopportunityloss(EOL)forthebestdecision.DecisionMakingwithProbabilitiesExpectedValueofPerfectInformation第十九页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
20Table12.9PayoffTablewithDecisions,GivenPerfectInformationDecisionMakingwithProbabilitiesEVPIExample(1of2)第二十页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
21Decisionwithperfectinformation: $100,000(.60)+30,000(.40)=$72,000Decisionwithoutperfectinformation: EV(office)=$100,000(.60)-40,000(.40)=$44,000
EVPI=$72,000-44,000=$28,000 EOL(office)=$0(.60)+70,000(.4)=$28,000DecisionMakingwithProbabilitiesEVPIExample(2of2)第二十一页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
22Exhibit12.7DecisionMakingwithProbabilitiesEVPIwithQMforWindows第二十二页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
23Adecisiontreeisadiagramconsistingofdecisionnodes(representedassquares),probabilitynodes(circles),anddecisionalternatives(branches). Table12.10PayoffTableforRealEstateInvestmentExampleDecisionMakingwithProbabilitiesDecisionTrees(1of4)第二十三页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
24Figure12.1DecisionTreeforRealEstateInvestmentExampleDecisionMakingwithProbabilitiesDecisionTrees(2of4)第二十四页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
25Theexpectedvalueiscomputedateachprobabilitynode: EV(node2)=.60($50,000)+.40(30,000)=$42,000 EV(node3)=.60($100,000)+.40(-40,000)=$44,000 EV(node4)=.60($30,000)+.40(10,000)=$22,000Brancheswiththegreatestexpectedvalueareselected.DecisionMakingwithProbabilitiesDecisionTrees(3of4)第二十五页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
26Figure12.2DecisionTreewithExpectedValueatProbabilityNodesDecisionMakingwithProbabilitiesDecisionTrees(4of4)第二十六页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
27Exhibit12.8DecisionMakingwithProbabilitiesDecisionTreeswithQMforWindows第二十七页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
28Exhibit12.9DecisionMakingwithProbabilitiesDecisionTreeswithExcelandTreePlan(1of4)第二十八页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
29Exhibit12.10DecisionMakingwithProbabilitiesDecisionTreeswithExcelandTreePlan(2of4)第二十九页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
30Exhibit12.11DecisionMakingwithProbabilitiesDecisionTreeswithExcelandTreePlan(3of4)第三十页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
31Exhibit12.12DecisionMakingwithProbabilitiesDecisionTreeswithExcelandTreePlan(4of4)第三十一页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
32DecisionMakingwithProbabilitiesSequentialDecisionTrees(1of4)Asequentialdecisiontreeisusedtoillustrateasituationrequiringaseriesofdecisions.Usedwhereapayofftable,limitedtoasingledecision,cannotbeused.Realestateinvestmentexamplemodifiedtoencompassaten-yearperiodinwhichseveraldecisionsmustbemade:
第三十二页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
33Figure12.3SequentialDecisionTreeDecisionMakingwithProbabilitiesSequentialDecisionTrees(2of4)第三十三页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
34DecisionMakingwithProbabilitiesSequentialDecisionTrees(3of4)Decisionistopurchaseland;highestnetexpectedvalue($1,160,000).Payoffofthedecisionis$1,160,000.
第三十四页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
35Figure12.4SequentialDecisionTreewithNodalExpectedValuesDecisionMakingwithProbabilitiesSequentialDecisionTrees(4of4)第三十五页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
36Exhibit12.13SequentialDecisionTreeAnalysisSolutionwithQMforWindows第三十六页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
37Exhibit12.14SequentialDecisionTreeAnalysisSolutionwithExcelandTreePlan第三十七页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
38Bayesiananalysisusesadditionalinformationtoalterthemarginalprobabilityoftheoccurrenceofanevent.Inrealestateinvestmentexample,usingexpectedvaluecriterion,bestdecisionwastopurchaseofficebuildingwithexpectedvalueof$444,000,andEVPIof$28,000.
Table12.11PayoffTablefortheRealEstateInvestmentExampleDecisionAnalysiswithAdditionalInformationBayesianAnalysis(1of3)第三十八页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
39Aconditionalprobabilityistheprobabilitythataneventwilloccurgiventhatanothereventhasalreadyoccurred.Economicanalystprovidesadditionalinformationforrealestateinvestmentdecision,formingconditionalprobabilities: g=goodeconomicconditions p=pooreconomicconditions P=positiveeconomicreport N=negativeeconomicreport P(Pg)=.80 P(NG)=.20 P(Pp)=.10 P(Np)=.90
DecisionAnalysiswithAdditionalInformationBayesianAnalysis(2of3)第三十九页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
40Aposteriaprobabilityisthealteredmarginalprobabilityofaneventbasedonadditionalinformation.Priorprobabilitiesforgoodorpooreconomicconditionsinrealestatedecision: P(g)=.60;P(p)=.40PosteriaprobabilitiesbyBayes’rule: (gP)=P(PG)P(g)/[P(Pg)P(g)+P(Pp)P(p)] =(.80)(.60)/[(.80)(.60)+(.10)(.40)]=.923Posteria(revised)probabilitiesfordecision: P(gN)=.250 P(pP)=.077 P(pN)=.750DecisionAnalysiswithAdditionalInformationBayesianAnalysis(3of3)第四十页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
41DecisionAnalysiswithAdditionalInformationDecisionTreeswithPosteriorProbabilities(1of4)Decisiontreewithposteriorprobabilitiesdifferfromearlierversionsinthat: Twonewbranchesatbeginningoftreerepresentreport outcomes. Probabilitiesofeachstateofnatureareposterior probabilitiesfromBayes’rule.第四十一页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
42Figure12.5DecisionTreewithPosteriorProbabilities
DecisionAnalysiswithAdditionalInformationDecisionTreeswithPosteriorProbabilities(2of4)第四十二页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
43DecisionAnalysiswithAdditionalInformationDecisionTreeswithPosteriorProbabilities(3of4)EV(apartmentbuilding)=$50,000(.923)+30,000(.077) =$48,460EV(strategy)=$89,220(.52)+35,000(.48)=$63,194第四十三页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
44Figure12.6DecisionTreeAnalysisDecisionAnalysiswithAdditionalInformationDecisionTreeswithPosteriorProbabilities(4of4)第四十四页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
45Table12.12ComputationofPosteriorProbabilitiesDecisionAnalysiswithAdditionalInformationComputingPosteriorProbabilitieswithTables第四十五页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
46Theexpectedvalueofsampleinformation(EVSI)isthedifferencebetweentheexpectedvaluewithandwithoutinformation:Forexampleproblem,EVSI=$63,194-44,000=$19,194Theefficiencyofsampleinformationistheratiooftheexpectedvalueofsampleinformationtotheexpectedvalueofperfectinformation:efficiency=EVSI/EVPI=$19,194/28,000=.68DecisionAnalysiswithAdditionalInformationExpectedValueofSampleInformation第四十六页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
47Table12.13PayoffTableforAutoInsuranceExampleDecisionAnalysiswithAdditionalInformationUtility(1of2)第四十七页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
48ExpectedCost(insurance)=.992($500)+.008(500)=$500ExpectedCost(noinsurance)=.992($0)+.008(10,000)=$80Decisionshouldbedonotpurchaseinsurance,butpeoplealmostalwaysdopurchaseinsurance.Utilityisameasureofpersonalsatisfactionderivedfrommoney.Utilesareunitsofsubjectivemeasuresofutility.Riskavertersforgoahighexpectedvaluetoavoidalow-probabilitydisaster.Risktakerstakeachanceforabonanzaonaverylow-probabilityeventinlieuofasurething.DecisionAnalysiswithAdditionalInformationUtility(2of2)第四十八页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
49DecisionAnalysisExampleProblemSolution(1of9)第四十九页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
50DecisionAnalysisExampleProblemSolution(2of9)Determinethebestdecisionwithoutprobabilitiesusingthe5criteriaofthechapter.Determinebestdecisionwithprobabilitiesassuming.70probabilityofgoodconditions,.30ofpoorconditions.Useexpectedvalueandexpectedopportunitylosscriteria.Computeexpectedvalueofperfectinformation.Developadecisiontreewithexpectedvalueatthenodes.Givenfollowing,P(Pg)=.70,P(Ng)=.30,P(Pp)=20,P(Np)=.80,determineposteriaprobabilitiesusingBayes’rule.Performadecisiontreeanalysisusingtheposteriorprobabilityobtainedinparte.第五十页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
51Step1(parta):Determinedecisionswithoutprobabilities.MaximaxDecision:Maintainstatusquo
Decisions
MaximumPayoffs Expand $800,000 Statusquo 1,300,000(maximum) Sell 320,000MaximinDecision:Expand
Decisions
MinimumPayoffs Expand $500,000(maximum) Statusquo -150,000 Sell 320,000DecisionAnalysisExampleProblemSolution(3of9)第五十一页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
52MinimaxRegretDecision:Expand
Decisions
MaximumRegrets Expand $500,000(minimum) Statusquo 650,000 Sell 980,000Hurwicz(=.3)Decision:Expand Expand $800,000(.3)+500,000(.7)=$590,000 Statusquo $1,300,000(.3)-150,000(.7)=$285,000 Sell $320,000(.3)+320,000(.7)=$320,000DecisionAnalysisExampleProblemSolution(4of9)第五十二页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis
53EqualLikelihoodDecision:Expand Ex
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新疆政法学院《新闻算法与编程》2023-2024学年第二学期期末试卷
- 天津渤海职业技术学院《卫星通信系统》2023-2024学年第二学期期末试卷
- 四川国际标榜职业学院《建筑工程造价管理》2023-2024学年第二学期期末试卷
- 内蒙古大学《新能源汽车概论》2023-2024学年第二学期期末试卷
- 2024届河北省石家庄二中实验学校高三下学期仿真模拟历史试卷
- 2024-2025学年山东省聊城市第二中学高一上学期12月月考历史试卷
- 新疆医科大学《高层建筑智慧施工》2023-2024学年第二学期期末试卷
- 广州科技贸易职业学院《建筑CAD》2023-2024学年第二学期期末试卷
- 岭南师范学院《高电压技术实验》2023-2024学年第二学期期末试卷
- 湖南外贸职业学院《无机及分析化学(Ⅱ)》2023-2024学年第二学期期末试卷
- DZ∕T 0207-2020 矿产地质勘查规范 硅质原料类(正式版)
- 数字贸易学 课件 第1-3章 导论、数字贸易的产生与发展;消费互联网、产业互联网与工业互联网
- 《飞向太空的航程》基础字词梳理
- GB/T 144-2024原木检验
- 追觅入职测评题库
- 宁德时代入职测评试题答案
- 干粉灭火器的使用方法课件
- 2024年广东省2024届高三高考模拟测试(一)一模 化学试卷(含答案)
- 半导体行业质量管理与质量控制
- 2024年山东省春季高考技能考试汽车专业试题库-下(判断题汇总)
- 部编版道德与法治二年级下册第三单元 绿色小卫士 单元作业设计
评论
0/150
提交评论