管理科学决策分析_第1页
管理科学决策分析_第2页
管理科学决策分析_第3页
管理科学决策分析_第4页
管理科学决策分析_第5页
已阅读5页,还剩52页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

管理科学决策分析Chapter12-DecisionAnalysis1第一页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

2ComponentsofDecisionMakingDecisionMakingwithoutProbabilitiesDecisionMakingwithProbabilitiesDecisionAnalysiswithAdditionalInformationUtilityChapterTopics第二页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

3Table12.1PayoffTableAstateofnatureisanactualeventthatmayoccurinthefuture.Apayofftableisameansoforganizingadecisionsituation,presentingthepayoffsfromdifferentdecisionsgiventhevariousstatesofnature.DecisionAnalysisComponentsofDecisionMaking第三页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

4Decisionsituation:Decision-MakingCriteria:maximax,maximin,minimax,minimaxregret,Hurwicz,andequallikelihood

Table12.2PayoffTablefortheRealEstateInvestmentsDecisionAnalysisDecisionMakingwithoutProbabilities第四页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

5Table12.3PayoffTableIllustratingaMaximaxDecisionInthemaximaxcriterionthedecisionmakerselectsthedecisionthatwillresultinthemaximumofmaximumpayoffs;anoptimisticcriterion.DecisionMakingwithoutProbabilitiesMaximaxCriterion第五页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

6Table12.4PayoffTableIllustratingaMaximinDecisionInthemaximincriterionthedecisionmakerselectsthedecisionthatwillreflectthemaximumoftheminimumpayoffs;apessimisticcriterion.DecisionMakingwithoutProbabilitiesMaximinCriterion第六页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

7Table12.6

RegretTableIllustratingtheMinimaxRegretDecisionRegretisthedifferencebetweenthepayofffromthebestdecisionandallotherdecisionpayoffs.Thedecisionmakerattemptstoavoidregretbyselectingthedecisionalternativethatminimizesthemaximumregret.DecisionMakingwithoutProbabilitiesMinimaxRegretCriterion第七页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

8TheHurwiczcriterionisacompromisebetweenthemaximaxandmaximincriterion.Acoefficientofoptimism,,isameasureofthedecisionmaker’soptimism.TheHurwiczcriterionmultipliesthebestpayoffbyandtheworstpayoffby1-.,foreachdecision,andthebestresultisselected.

Decision

Values

Apartmentbuilding$50,000(.4)+30,000(.6)=38,000 Officebuilding$100,000(.4)-40,000(.6)=16,000 Warehouse$30,000(.4)+10,000(.6)=18,000DecisionMakingwithoutProbabilitiesHurwiczCriterion第八页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

9Theequallikelihood(orLaplace)criterionmultipliesthedecisionpayoffforeachstateofnaturebyanequalweight,thusassumingthatthestatesofnatureareequallylikelytooccur.

Decision

Values

Apartmentbuilding$50,000(.5)+30,000(.5)=40,000 Officebuilding$100,000(.5)-40,000(.5)=30,000 Warehouse$30,000(.5)+10,000(.5)=20,000DecisionMakingwithoutProbabilitiesEqualLikelihoodCriterion第九页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

10Adominantdecisionisonethathasabetterpayoffthananotherdecisionundereachstateofnature.Theappropriatecriterionisdependentonthe“risk”personalityandphilosophyofthedecisionmaker.

Criterion

Decision(Purchase) Maximax Officebuilding Maximin Apartmentbuilding Minimaxregret Apartmentbuilding Hurwicz Apartmentbuilding Equallikelihood ApartmentbuildingDecisionMakingwithoutProbabilitiesSummaryofCriteriaResults第十页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

11Exhibit12.1DecisionMakingwithoutProbabilitiesSolutionwithQMforWindows(1of3)第十一页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

12Exhibit12.2DecisionMakingwithoutProbabilitiesSolutionwithQMforWindows(2of3)第十二页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

13Exhibit12.3DecisionMakingwithoutProbabilitiesSolutionwithQMforWindows(3of3)第十三页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

14Expectedvalueiscomputedbymultiplyingeachdecisionoutcomeundereachstateofnaturebytheprobabilityofitsoccurrence. EV(Apartment)=$50,000(.6)+30,000(.4)=42,000 EV(Office)=$100,000(.6)-40,000(.4)=44,000 EV(Warehouse)=$30,000(.6)+10,000(.4)=22,000Table12.7PayofftablewithProbabilitiesforStatesofNatureDecisionMakingwithProbabilitiesExpectedValue第十四页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

15Theexpectedopportunitylossistheexpectedvalueoftheregretforeachdecision.Theexpectedvalueandexpectedopportunitylosscriterionresultinthesamedecision.

EOL(Apartment)=$50,000(.6)+0(.4)=30,000 EOL(Office)=$0(.6)+70,000(.4)=28,000 EOL(Warehouse)=$70,000(.6)+20,000(.4)=50,000Table12.8Regret(OpportunityLoss)TablewithProbabilitiesforStatesofNatureDecisionMakingwithProbabilitiesExpectedOpportunityLoss第十五页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

16Exhibit12.4ExpectedValueProblemsSolutionwithQMforWindows第十六页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

17Exhibit12.5ExpectedValueProblemsSolutionwithExcelandExcelQM(1of2)第十七页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

18Exhibit12.6ExpectedValueProblemsSolutionwithExcelandExcelQM(2of2)第十八页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

19Theexpectedvalueofperfectinformation(EVPI)isthemaximumamountadecisionmakerwouldpayforadditionalinformation.EVPIequalstheexpectedvaluegivenperfectinformationminustheexpectedvaluewithoutperfectinformation.EVPIequalstheexpectedopportunityloss(EOL)forthebestdecision.DecisionMakingwithProbabilitiesExpectedValueofPerfectInformation第十九页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

20Table12.9PayoffTablewithDecisions,GivenPerfectInformationDecisionMakingwithProbabilitiesEVPIExample(1of2)第二十页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

21Decisionwithperfectinformation: $100,000(.60)+30,000(.40)=$72,000Decisionwithoutperfectinformation: EV(office)=$100,000(.60)-40,000(.40)=$44,000

EVPI=$72,000-44,000=$28,000 EOL(office)=$0(.60)+70,000(.4)=$28,000DecisionMakingwithProbabilitiesEVPIExample(2of2)第二十一页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

22Exhibit12.7DecisionMakingwithProbabilitiesEVPIwithQMforWindows第二十二页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

23Adecisiontreeisadiagramconsistingofdecisionnodes(representedassquares),probabilitynodes(circles),anddecisionalternatives(branches). Table12.10PayoffTableforRealEstateInvestmentExampleDecisionMakingwithProbabilitiesDecisionTrees(1of4)第二十三页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

24Figure12.1DecisionTreeforRealEstateInvestmentExampleDecisionMakingwithProbabilitiesDecisionTrees(2of4)第二十四页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

25Theexpectedvalueiscomputedateachprobabilitynode: EV(node2)=.60($50,000)+.40(30,000)=$42,000 EV(node3)=.60($100,000)+.40(-40,000)=$44,000 EV(node4)=.60($30,000)+.40(10,000)=$22,000Brancheswiththegreatestexpectedvalueareselected.DecisionMakingwithProbabilitiesDecisionTrees(3of4)第二十五页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

26Figure12.2DecisionTreewithExpectedValueatProbabilityNodesDecisionMakingwithProbabilitiesDecisionTrees(4of4)第二十六页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

27Exhibit12.8DecisionMakingwithProbabilitiesDecisionTreeswithQMforWindows第二十七页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

28Exhibit12.9DecisionMakingwithProbabilitiesDecisionTreeswithExcelandTreePlan(1of4)第二十八页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

29Exhibit12.10DecisionMakingwithProbabilitiesDecisionTreeswithExcelandTreePlan(2of4)第二十九页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

30Exhibit12.11DecisionMakingwithProbabilitiesDecisionTreeswithExcelandTreePlan(3of4)第三十页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

31Exhibit12.12DecisionMakingwithProbabilitiesDecisionTreeswithExcelandTreePlan(4of4)第三十一页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

32DecisionMakingwithProbabilitiesSequentialDecisionTrees(1of4)Asequentialdecisiontreeisusedtoillustrateasituationrequiringaseriesofdecisions.Usedwhereapayofftable,limitedtoasingledecision,cannotbeused.Realestateinvestmentexamplemodifiedtoencompassaten-yearperiodinwhichseveraldecisionsmustbemade:

第三十二页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

33Figure12.3SequentialDecisionTreeDecisionMakingwithProbabilitiesSequentialDecisionTrees(2of4)第三十三页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

34DecisionMakingwithProbabilitiesSequentialDecisionTrees(3of4)Decisionistopurchaseland;highestnetexpectedvalue($1,160,000).Payoffofthedecisionis$1,160,000.

第三十四页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

35Figure12.4SequentialDecisionTreewithNodalExpectedValuesDecisionMakingwithProbabilitiesSequentialDecisionTrees(4of4)第三十五页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

36Exhibit12.13SequentialDecisionTreeAnalysisSolutionwithQMforWindows第三十六页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

37Exhibit12.14SequentialDecisionTreeAnalysisSolutionwithExcelandTreePlan第三十七页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

38Bayesiananalysisusesadditionalinformationtoalterthemarginalprobabilityoftheoccurrenceofanevent.Inrealestateinvestmentexample,usingexpectedvaluecriterion,bestdecisionwastopurchaseofficebuildingwithexpectedvalueof$444,000,andEVPIof$28,000.

Table12.11PayoffTablefortheRealEstateInvestmentExampleDecisionAnalysiswithAdditionalInformationBayesianAnalysis(1of3)第三十八页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

39Aconditionalprobabilityistheprobabilitythataneventwilloccurgiventhatanothereventhasalreadyoccurred.Economicanalystprovidesadditionalinformationforrealestateinvestmentdecision,formingconditionalprobabilities: g=goodeconomicconditions p=pooreconomicconditions P=positiveeconomicreport N=negativeeconomicreport P(Pg)=.80 P(NG)=.20 P(Pp)=.10 P(Np)=.90

DecisionAnalysiswithAdditionalInformationBayesianAnalysis(2of3)第三十九页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

40Aposteriaprobabilityisthealteredmarginalprobabilityofaneventbasedonadditionalinformation.Priorprobabilitiesforgoodorpooreconomicconditionsinrealestatedecision: P(g)=.60;P(p)=.40PosteriaprobabilitiesbyBayes’rule: (gP)=P(PG)P(g)/[P(Pg)P(g)+P(Pp)P(p)] =(.80)(.60)/[(.80)(.60)+(.10)(.40)]=.923Posteria(revised)probabilitiesfordecision: P(gN)=.250 P(pP)=.077 P(pN)=.750DecisionAnalysiswithAdditionalInformationBayesianAnalysis(3of3)第四十页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

41DecisionAnalysiswithAdditionalInformationDecisionTreeswithPosteriorProbabilities(1of4)Decisiontreewithposteriorprobabilitiesdifferfromearlierversionsinthat: Twonewbranchesatbeginningoftreerepresentreport outcomes. Probabilitiesofeachstateofnatureareposterior probabilitiesfromBayes’rule.第四十一页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

42Figure12.5DecisionTreewithPosteriorProbabilities

DecisionAnalysiswithAdditionalInformationDecisionTreeswithPosteriorProbabilities(2of4)第四十二页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

43DecisionAnalysiswithAdditionalInformationDecisionTreeswithPosteriorProbabilities(3of4)EV(apartmentbuilding)=$50,000(.923)+30,000(.077) =$48,460EV(strategy)=$89,220(.52)+35,000(.48)=$63,194第四十三页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

44Figure12.6DecisionTreeAnalysisDecisionAnalysiswithAdditionalInformationDecisionTreeswithPosteriorProbabilities(4of4)第四十四页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

45Table12.12ComputationofPosteriorProbabilitiesDecisionAnalysiswithAdditionalInformationComputingPosteriorProbabilitieswithTables第四十五页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

46Theexpectedvalueofsampleinformation(EVSI)isthedifferencebetweentheexpectedvaluewithandwithoutinformation:Forexampleproblem,EVSI=$63,194-44,000=$19,194Theefficiencyofsampleinformationistheratiooftheexpectedvalueofsampleinformationtotheexpectedvalueofperfectinformation:efficiency=EVSI/EVPI=$19,194/28,000=.68DecisionAnalysiswithAdditionalInformationExpectedValueofSampleInformation第四十六页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

47Table12.13PayoffTableforAutoInsuranceExampleDecisionAnalysiswithAdditionalInformationUtility(1of2)第四十七页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

48ExpectedCost(insurance)=.992($500)+.008(500)=$500ExpectedCost(noinsurance)=.992($0)+.008(10,000)=$80Decisionshouldbedonotpurchaseinsurance,butpeoplealmostalwaysdopurchaseinsurance.Utilityisameasureofpersonalsatisfactionderivedfrommoney.Utilesareunitsofsubjectivemeasuresofutility.Riskavertersforgoahighexpectedvaluetoavoidalow-probabilitydisaster.Risktakerstakeachanceforabonanzaonaverylow-probabilityeventinlieuofasurething.DecisionAnalysiswithAdditionalInformationUtility(2of2)第四十八页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

49DecisionAnalysisExampleProblemSolution(1of9)第四十九页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

50DecisionAnalysisExampleProblemSolution(2of9)Determinethebestdecisionwithoutprobabilitiesusingthe5criteriaofthechapter.Determinebestdecisionwithprobabilitiesassuming.70probabilityofgoodconditions,.30ofpoorconditions.Useexpectedvalueandexpectedopportunitylosscriteria.Computeexpectedvalueofperfectinformation.Developadecisiontreewithexpectedvalueatthenodes.Givenfollowing,P(Pg)=.70,P(Ng)=.30,P(Pp)=20,P(Np)=.80,determineposteriaprobabilitiesusingBayes’rule.Performadecisiontreeanalysisusingtheposteriorprobabilityobtainedinparte.第五十页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

51Step1(parta):Determinedecisionswithoutprobabilities.MaximaxDecision:Maintainstatusquo

Decisions

MaximumPayoffs Expand $800,000 Statusquo 1,300,000(maximum) Sell 320,000MaximinDecision:Expand

Decisions

MinimumPayoffs Expand $500,000(maximum) Statusquo -150,000 Sell 320,000DecisionAnalysisExampleProblemSolution(3of9)第五十一页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

52MinimaxRegretDecision:Expand

Decisions

MaximumRegrets Expand $500,000(minimum) Statusquo 650,000 Sell 980,000Hurwicz(=.3)Decision:Expand Expand $800,000(.3)+500,000(.7)=$590,000 Statusquo $1,300,000(.3)-150,000(.7)=$285,000 Sell $320,000(.3)+320,000(.7)=$320,000DecisionAnalysisExampleProblemSolution(4of9)第五十二页,共五十七页,编辑于2023年,星期五Chapter12-DecisionAnalysis

53EqualLikelihoodDecision:Expand Ex

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论