版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Theeconomic
potentialof
generativeAI
Thenextproductivityfrontier
June2023
Authors
MichaelChui
EricHazan
RogerRoberts
AlexSingla
KateSmaje
AlexSukharevsky
LareinaYee
RodneyZemmel
iiTheeconomicpotentialofgenerativeAI:Thenextproductivityfrontier
Contents
Keyinsights
3
Chapter1:GenerativeAIasatechnologycatalyst
4
Glossary
6
Chapter2:GenerativeAIusecasesacrossfunctionsandindustries
8
Spotlight:Retailandconsumerpackagedgoods
27
Spotlight:Pharmaceuticalsandmedicalproducts
30
Chapter3:Thegenerative
AIfutureofwork:Impactsonworkactivities,economicgrowth,andproductivity
32
Chapter4:Considerationsforbusinessesandsociety
48
Appendix
53
Spotlight:Banking
28
TheeconomicpotentialofgenerativeAI:Thenextproductivityfrontier1
2TheeconomicpotentialofgenerativeAI:Thenextproductivityfrontier
Keyinsights
1.GenerativeAI’simpactonproductivitycouldaddtrillionsofdollarsinvaluetotheglobaleconomy.OurlatestresearchestimatesthatgenerativeAIcouldaddtheequivalentof$2.6trillionto$4.4trillionannuallyacrossthe
63usecasesweanalyzed—bycomparison,theUnitedKingdom’sentireGDPin2021was$3.1trillion.Thiswouldincreasetheimpactofallartificialintelligenceby15to
40percent.ThisestimatewouldroughlydoubleifweincludetheimpactofembeddinggenerativeAIintosoftwarethatiscurrentlyusedforothertasksbeyondthoseuse
cases.
2.About75percentofthevaluethatgenerativeAIusecasescoulddeliverfallsacrossfourareas:
Customeroperations,marketingandsales,softwareengineering,andR&D.Across16businessfunctions,weexamined63usecasesinwhichthetechnologycanaddressspecificbusinesschallengesinwaysthatproduceoneormoremeasurableoutcomes.ExamplesincludegenerativeAI’sabilitytosupportinteractionswithcustomers,generatecreativecontentformarketingandsales,anddraftcomputercodebasedonnatural-languageprompts,amongmanyothertasks.
3.GenerativeAIwillhaveasignificantimpactacrossallindustrysectors.
Banking,hightech,andlifesciencesareamongtheindustriesthatcouldseethebiggestimpactasapercentageoftheirrevenuesfromgenerativeAI.Acrossthebankingindustry,forexample,thetechnologycoulddelivervalue
equaltoanadditional$200billionto$340billionannuallyiftheusecaseswerefullyimplemented.Inretailandconsumerpackagedgoods,thepotentialimpactisalsosignificantat$400billionto$660billionayear.
4.GenerativeAIhasthepotentialtochangetheanatomyofwork,augmentingthecapabilitiesofindividualworkersbyautomatingsomeoftheirindividualactivities.
CurrentgenerativeAIandothertechnologieshavethepotentialtoautomateworkactivitiesthatabsorb60to70percentofemployees’timetoday.Incontrast,wepreviouslyestimatedthattechnologyhasthepotentialtoautomatehalfofthetimeemployeesspendworking.1TheaccelerationinthepotentialfortechnicalautomationislargelyduetogenerativeAI’sincreasedabilitytounderstandnaturallanguage,whichisrequiredforworkactivitiesthataccountfor25percentoftotalworktime.Thus,generativeAIhasmoreimpactonknowledgeworkassociatedwithoccupationsthathavehigherwagesandeducationalrequirementsthanonothertypesofwork.
5.Thepaceofworkforcetransformationislikelytoaccelerate,givenincreasesinthepotentialfortechnicalautomation.
Ourupdatedadoptionscenarios,includingtechnologydevelopment,economicfeasibility,anddiffusiontimelines,leadtoestimatesthathalfoftoday’sworkactivitiescouldbeautomatedbetween2030and2060,withamidpointin2045,orroughlyadecadeearlierthaninourpreviousestimates.
6.GenerativeAIcansubstantially
increaselaborproductivityacross
theeconomy,butthatwillrequire
investmentstosupportworkers
astheyshiftworkactivitiesor
changejobs.GenerativeAIcould
enablelaborproductivitygrowth
of0.1to0.6percentannually
through2040,dependingonthe
rateoftechnologyadoptionand
redeploymentofworkertime
intootheractivities.Combining
generativeAIwithallother
technologies,workautomation
couldadd0.2to3.3percentage
pointsannuallytoproductivity
growth.However,workerswillneed
supportinlearningnewskills,and
somewillchangeoccupations.If
workertransitionsandotherrisks
canbemanaged,generativeAI
couldcontributesubstantivelyto
economicgrowthandsupporta
moresustainable,inclusiveworld.
7.TheeraofgenerativeAIisjust
beginning.Excitementoverthis
technologyispalpable,andearly
pilotsarecompelling.Butafull
realizationofthetechnology’s
benefitswilltaketime,andleaders
inbusinessandsocietystill
haveconsiderablechallengesto
address.Theseincludemanaging
therisksinherentingenerative
AI,determiningwhatnewskills
andcapabilitiestheworkforcewill
need,andrethinkingcorebusiness
processessuchasretrainingand
developingnewskills.
TheeconomicpotentialofgenerativeAI:Thenextproductivityfrontier3
1
GenerativeAIasa
technologycatalyst
TograspwhatliesaheadrequiresanunderstandingofthebreakthroughsthathaveenabledtheriseofgenerativeAI,whichweredecadesinthemaking.ChatGPT,GitHubCopilot,StableDiffusion,andothergenerativeAItoolsthathavecapturedcurrentpublicattentionaretheresultofsignificantlevelsofinvestmentinrecentyearsthathavehelpedadvancemachinelearninganddeeplearning.ThisinvestmentundergirdstheAIapplicationsembeddedinmanyoftheproductsandservicesweuseeveryday.
ButbecauseAIhaspermeatedourlivesincrementally—througheverythingfromthetechpoweringoursmartphonestoautonomous-drivingfeaturesoncarstothetoolsretailersusetosurpriseanddelightconsumers—itsprogresswasalmostimperceptible.Clearmilestones,suchaswhenAlphaGo,anAI-basedprogramdevelopedbyDeepMind,defeatedaworldchampionGoplayerin2016,werecelebratedbutthenquicklyfadedfromthepublic’sconsciousness.
ChatGPTanditscompetitorshavecapturedtheimaginationofpeoplearoundtheworldinawayAlphaGodidnot,thankstotheirbroadutility—almostanyonecanusethemtocommunicateandcreate—andpreternaturalabilitytohaveaconversationwithauser.
ThelatestgenerativeAIapplicationscanperformarangeofroutinetasks,suchasthereorganizationandclassificationofdata.Butitistheirabilitytowritetext,composemusic,andcreatedigitalartthathasgarneredheadlinesandpersuadedconsumersandhouseholdstoexperimentontheirown.Asaresult,abroadersetofstakeholdersaregrapplingwithgenerativeAI’simpactonbusinessandsocietybutwithoutmuchcontexttohelpthemmakesenseofit.
4TheeconomicpotentialofgenerativeAI:Thenextproductivityfrontier
Howdidwegethere?Gradually,thenallofasudden
Forthepurposesofthisreport,wedefinegenerativeAIasapplicationstypicallybuiltusingfoundationmodels.Thesemodelscontainexpansiveartificialneuralnetworksinspiredbythebillionsofneuronsconnectedinthehumanbrain.Foundationmodelsarepartofwhatiscalleddeeplearning,atermthatalludestothemanydeeplayerswithinneuralnetworks.DeeplearninghaspoweredmanyoftherecentadvancesinAI,butthefoundationmodelspoweringgenerativeAIapplicationsareastepchangeevolutionwithindeeplearning.Unlikepreviousdeeplearningmodels,theycanprocessextremelylargeandvariedsetsofunstructureddataandperformmorethanonetask.
Foundationmodelshaveenablednewcapabilitiesandvastlyimprovedexistingonesacrossabroadrangeofmodalities,includingimages,video,audio,andcomputercode.AItrainedonthesemodelscanperformseveralfunctions;itcanclassify,edit,summarize,answerquestions,anddraftnewcontent,amongothertasks.
Continuedinnovationwillalsobringnewchallenges.Forexample,thecomputationalpowerrequiredtotraingenerativeAIwithhundredsofbillionsofparametersthreatenstobecomeabottleneckindevelopment.2Further,there’sasignificantmove—spearheadedbytheopen-sourcecommunityandspreadingtotheleadersofgenerativeAIcompaniesthemselves—tomakeAImoreresponsible,whichcouldincreaseitscosts.
Nonetheless,fundingforgenerativeAI,thoughstillafractionoftotalinvestmentsinartificialintelligence,issignificantandgrowingrapidly—reachingatotalof$12billioninthefirstfivemonthsof2023alone.VenturecapitalandotherprivateexternalinvestmentsingenerativeAIincreasedbyanaveragecompoundgrowthrateof74percentannuallyfrom2017to2022.Duringthesameperiod,investmentsinartificialintelligenceoverallroseannuallyby29percent,albeitfromahigherbase.
TherushtothrowmoneyatallthingsgenerativeAIreflectshowquicklyitscapabilitieshavedeveloped.ChatGPTwasreleasedinNovember2022.Fourmonthslater,OpenAIreleasedanewlargelanguagemodel,orLLM,calledGPT-4withmarkedlyimprovedcapabilities.3Similarly,byMay2023,Anthropic’sgenerativeAI,Claude,wasabletoprocess100,000tokensoftext,equaltoabout75,000wordsinaminute—thelengthoftheaveragenovel—comparedwithroughly9,000tokenswhenitwasintroducedinMarch2023.4AndinMay2023,GoogleannouncedseveralnewfeaturespoweredbygenerativeAI,includingSearchGenerativeExperienceandanewLLMcalledPaLM2thatwillpoweritsBardchatbot,amongotherGoogleproducts.5
Fromageographicperspective,externalprivateinvestmentingenerativeAI,mostlyfromtechgiantsandventurecapitalfirms,islargelyconcentratedinNorthAmerica,reflectingthecontinent’scurrentdominationoftheoverallAIinvestmentlandscape.GenerativeAI–relatedcompaniesbasedintheUnitedStatesraisedabout$8billionfrom2020to2022,accountingfor75percentoftotalinvestmentsinsuchcompaniesduringthatperiod.6
GenerativeAIhasstunnedandexcitedtheworldwithitspotentialforreshapinghowknowledgeworkgetsdoneinindustriesandbusinessfunctionsacrosstheentireeconomy.Acrossfunctionssuchassalesandmarketing,customeroperations,andsoftwaredevelopment,itispoisedtotransformrolesandboostperformance.Intheprocess,itcouldunlocktrillionsofdollarsinvalueacrosssectorsfrombankingtolifesciences.WehaveusedtwooverlappinglensesinthisreporttounderstandthepotentialforgenerativeAItocreatevalueforcompaniesandaltertheworkforce.Thefollowingsectionsshareourinitialfindings.
TheeconomicpotentialofgenerativeAI:Thenextproductivityfrontier5
Glossary
Applicationprogramminginterface(API)isawaytoprogrammaticallyaccess(usuallyexternal)models,datasets,orotherpiecesofsoftware.
Artificialintelligence(AI)istheabilityofsoftwaretoperformtasksthattraditionallyrequirehumanintelligence.
Artificialneuralnetworks(ANNs)arecomposedofinterconnectedlayersofsoftware-basedcalculatorsknownas“neurons.”Thesenetworkscanabsorbvastamountsofinputdataandprocessthatdatathroughmultiplelayersthatextractandlearnthedata’sfeatures.
Deeplearningisasubsetofmachinelearningthatusesdeepneuralnetworks,whicharelayersofconnected“neurons”whoseconnectionshaveparametersorweightsthatcanbetrained.Itisespeciallyeffectiveatlearningfromunstructureddatasuchasimages,text,andaudio.
Earlyandlatescenariosaretheextremescenariosofourwork-automationmodel.The“earliest”scenarioflexesallparameterstotheextremesofplausibleassumptions,resultinginfasterautomationdevelopmentandadoption,andthe“latest”scenarioflexesallparametersintheoppositedirection.Therealityislikelytofallsomewherebetweenthetwo.
Fine-tuningistheprocessofadaptingapretrainedfoundationmodeltoperformbetterinaspecifictask.Thisentailsarelativelyshortperiodoftrainingonalabeleddataset,whichismuchsmallerthanthedatasetthemodelwasinitiallytrainedon.Thisadditionaltrainingallowsthemodeltolearnandadapttothenuances,terminology,andspecificpatternsfoundinthesmallerdataset.
Foundationmodels(FM)aredeeplearningmodelstrainedonvastquantitiesofunstructured,unlabeleddatathatcanbeusedforawiderangeoftasksoutoftheboxoradaptedtospecifictasksthroughfine-tuning.ExamplesofthesemodelsareGPT-4,PaLM,DALL·E2,andStableDiffusion.
GenerativeAIisAIthatistypicallybuiltusingfoundationmodelsandhascapabilitiesthatearlierAIdidnothave,suchastheabilitytogeneratecontent.Foundationmodelscanalsobeusedfornongenerativepurposes(forexample,classifyingusersentimentasnegativeorpositivebasedoncalltranscripts)whileofferingsignificantimprovementoverearliermodels.Forsimplicity,whenwerefertogenerativeAIinthisarticle,weincludeallfoundationmodel
usecases.
Graphicsprocessingunits(GPUs)arecomputerchipsthatwereoriginallydevelopedforproducingcomputergraphics(suchasforvideogames)andarealsousefulfordeeplearningapplications.Incontrast,traditionalmachinelearningandotheranalysesusuallyrunoncentralprocessingunits(CPUs),normallyreferredtoasacomputer’s“processor.”
Largelanguagemodels(LLMs)makeupaclassoffoundationmodelsthatcanprocessmassiveamountsofunstructuredtextandlearntherelationshipsbetweenwordsorportionsofwords,knownastokens.ThisenablesLLMstogeneratenatural-languagetext,performingtaskssuchassummarizationorknowledgeextraction.GPT-4(whichunderliesChatGPT)andLaMDA(themodelbehindBard)areexamplesofLLMs.
6TheeconomicpotentialofgenerativeAI:Thenextproductivityfrontier
Machinelearning(ML)isasubsetofAIinwhichamodelgainscapabilitiesafteritistrainedon,orshown,manyexampledatapoints.Machinelearningalgorithmsdetectpatternsandlearnhowtomakepredictionsandrecommendationsbyprocessingdataandexperiences,ratherthanbyreceivingexplicitprogramminginstruction.Thealgorithmsalsoadaptandcanbecomemoreeffectiveinresponsetonewdataandexperiences.
Modalityisahigh-leveldatacategorysuchasnumbers,text,images,video,andaudio.
ProductivityfromlaboristheratioofGDPtototalhoursworkedintheeconomy.Laborproductivitygrowthcomesfromincreasesintheamountofcapitalavailabletoeachworker,theeducationandexperienceoftheworkforce,andimprovementsintechnology.
Promptengineeringreferstotheprocessofdesigning,refining,andoptimizinginputpromptstoguideagenerativeAImodeltowardproducingdesired(thatis,accurate)outputs.
Self-attention,sometimescalledintra-attention,isamechanismthataimstomimiccognitiveattention,relatingdifferentpositionsofasinglesequencetocomputearepresentationofthe
sequence.
Structureddataaretabulardata(forexample,organizedintables,databases,orspreadsheets)thatcanbeusedtotrainsomemachinelearningmodelseffectively.
Transformersarearelativelynewneuralnetworkarchitecturethatreliesonself-attentionmechanismstotransformasequenceofinputsintoasequenceofoutputswhilefocusingitsattentiononimportantpartsofthecontextaroundtheinputs.Transformersdonotrelyonconvolutionsorrecurrentneuralnetworks.
Technicalautomationpotentialreferstotheshareoftheworktimethatcouldbeautomated.Weassessedthetechnicalpotentialforautomationacrosstheglobaleconomythroughananalysisofthecomponentactivitiesofeachoccupation.WeuseddatabasespublishedbyinstitutionsincludingtheWorldBankandtheUSBureauofLaborStatisticstobreakdownabout850occupationsintoapproximately2,100activities,andwedeterminedtheperformancecapabilitiesneededforeachactivitybasedonhowhumanscurrentlyperformthem.
Usecasesaretargetedapplicationstoaspecificbusinesschallengethatproducesoneormoremeasurableoutcomes.Forexample,inmarketing,generativeAIcouldbeusedtogeneratecreativecontentsuchaspersonalizedemails.
Unstructureddatalackaconsistentformatorstructure(forexample,text,images,andaudiofiles)andtypicallyrequiremoreadvancedtechniquestoextractinsights.
TheeconomicpotentialofgenerativeAI:Thenextproductivityfrontier7
2
GenerativeAIuse
casesacrossfunctions
andindustries
GenerativeAIisastepchangeintheevolutionofartificialintelligence.Ascompaniesrushtoadaptandimplementit,understandingthetechnology’spotentialtodelivervaluetotheeconomyandsocietyatlargewillhelpshapecriticaldecisions.WehaveusedtwocomplementarylensestodeterminewheregenerativeAIwithitscurrentcapabilitiescoulddeliverthebiggestvalueandhowbigthatvaluecouldbe(Exhibit1).
8TheeconomicpotentialofgenerativeAI:Thenextproductivityfrontier
TotaleconomicLaborproductivitypotential
potentialof60-plusacross~2,100detailedwork
organizationaluseactivitiesperformedby
cases1globalworkforce
Revenue
impactsof
usecases1
Costimpacts
ofusecases
Exhibit1
ThepotentialimpactofgenerativeAIcanbeevaluatedthroughtwolenses.
Lens1Lens2
1Forquantitativeanalysis,revenueimpactswererecastasproductivityincreasesonthecorrespondingspendinordertomaintaincomparabilitywithcost
impactsandnottoassumeadditionalgrowthinanyparticularmarket.
McKinsey&Company
ThefirstlensscansusecasesforgenerativeAIthatorganizationscouldadopt.Wedefinea“usecase”asatargetedapplicationofgenerativeAItoaspecificbusinesschallenge,resultinginoneormoremeasurableoutcomes.Forexample,ausecaseinmarketingistheapplicationofgenerativeAItogeneratecreativecontentsuchaspersonalizedemails,themeasurableoutcomesofwhichpotentiallyincludereductionsinthecostofgeneratingsuchcontentandincreasesinrevenuefromtheenhancedeffectivenessofhigher-qualitycontentatscale.Weidentified63generativeAIusecasesspanning16businessfunctionsthatcoulddelivertotalvalueintherangeof$2.6trillionto$4.4trillionineconomicbenefitsannuallywhenappliedacrossindustries.
Thatwouldadd15to40percenttothe$11.0trillionto$17.7trillionofeconomicvaluethatwenowestimatenongenerativeartificialintelligenceandanalyticscouldunlock.(Ourpreviousestimatefrom2017wasthatAIcoulddeliver$9.5trillionto$15.4trillionineconomicvalue.)
OursecondlenscomplementsthefirstbyanalyzinggenerativeAI’spotentialimpactontheworkactivitiesrequiredinsome850occupations.WemodeledscenariostoestimatewhengenerativeAIcouldperformeachofmorethan2,100“detailedworkactivities”—suchas“communicatingwithothersaboutoperationalplansoractivities”—thatmakeupthoseoccupationsacrosstheworldeconomy.ThisenablesustoestimatehowthecurrentcapabilitiesofgenerativeAIcouldaffectlaborproductivityacrossallworkcurrentlydonebytheglobalworkforce.
TheeconomicpotentialofgenerativeAI:Thenextproductivityfrontier9
13.6–22.1
2.6–4.4
11.0–17.7
Someofthisimpactwilloverlapwithcostreductionsintheusecaseanalysisdescribedabove,whichweassumearetheresultofimprovedlaborproductivity.Nettingoutthisoverlap,thetotaleconomicbenefitsofgenerativeAI—includingthemajorusecasesweexploredandthemyriadincreasesinproductivitythatarelikelytomaterializewhenthetechnologyisappliedacrossknowledgeworkers’activities—amountsto$6.1trillionto$7.9trillionannually(Exhibit2).
Exhibit2
GenerativeAIcouldcreateadditionalvaluepotentialabovewhatcouldbeunlockedbyotherAIandanalytics.
AI’spotentialimpactontheglobaleconomy,$trillion
17.1–25.6
6.1–7.9
~15–40%
incrementaleconomicimpact
~35–70%
incrementaleconomicimpact
Advancedanalytics,
Newgenerative
Totaluse
Allworkerproductivity
TotalAI
traditionalmachine
AIusecases
case-driven
enabledbygenerative
economic
learning,anddeep
potential
AI,includinginuse
potential
learning1
cases
1Updatedusecaseestimatesfrom"NotesfromtheAIfrontier:Applicationsandvalueofdeeplearning,”McKinseyGlobalInstitute,April17,2018.
McKinsey&Company
10TheeconomicpotentialofgenerativeAI:Thenextproductivityfrontier
WhilegenerativeAIisanexcitingandrapidlyadvancingtechnology,theotherapplicationsofAIdiscussedinourpreviousreportcontinuetoaccountforthemajorityoftheoverallpotentialvalueofAI.Traditionaladvanced-analyticsandmachinelearningalgorithmsarehighlyeffectiveatperformingnumericalandoptimizationtaskssuchaspredictivemodeling,andtheycontinuetofindnewapplicationsinawiderangeofindustries.However,asgenerativeAIcontinuestodevelopandmature,ithasthepotentialtoopenwhollynewfrontiersincreativityandinnovation.IthasalreadyexpandedthepossibilitiesofwhatAIoverallcanachieve(pleaseseeBox1,“HowweestimatedthevaluepotentialofgenerativeAIusecases”).
Box1
HowweestimatedthevaluepotentialofgenerativeAIusecases
ToassessthepotentialvalueofgenerativeAI,acustomerserviceusecasebutnotinause
weupdatedaproprietaryMcKinseydatabaseofcaseoptimizingalogisticsnetwork,wherevalue
potentialAIusecasesanddrewontheexperienceprimarilyarisesfromquantitativeanalysis.
ofmorethan100expertsinindustriesandtheir
ofthesegenerativeAIusecasesiftheywere
generativeAItechniques(primarilytransformer-
technologies.
Weanalyzedonlyusecasesforwhichgenerativemarketingexpenditures.
AIcoulddeliverasignificantimprovementinthe
estimatesoftheprimaryvaluethetechnology
couldunlockdonotincludeusecasesforwhich
language.Forexample,natural-language
capabilitieswouldbethekeydriverofvaluein
1“NotesfromtheAIfrontier:Applicationsandvalueofdeeplearning,”McKinseyGlobalInstitute,April17,2018.
problemsnotwelladdressedbyprevious
deliverbyincreasingtheproductivityofsalesand
Ourestimatesarebasedonthestructureofthe
basedneuralnetworks)canbeusedtosolvecasesaimedatincreasingrevenue,suchassome
outputsthatdrivekeyvalue.Inparticular,ourglobaleconomyin2022anddonotconsiderthe
businessfunctions.1OurupdatesexaminedWethenestimatedthepotentialannualvalue
usecasesofgenerativeAI—specifically,howadoptedacrosstheentireeconomy.Foruse
thesolebenefitwouldbeitsabilitytousenaturalentirelynewproductorservicecategories.
valuegenerativeAIcouldcreateifitproduced
Inthischapter,wehighlightthevaluepotentialofgenerativeAIacrosstwodimensions:businessfunctionandmodality.
TheeconomicpotentialofgenerativeAI:Thenextproductivityfrontier11
500
400
300
Impact,$billion
200
100
0
Valuepotentialbyfunction
WhilegenerativeAIcouldhaveanimpactonmostbusinessfunctions,afewstandoutwhenmeasuredbythetechnology’simpactasashareoffunctionalcost(Exhibit3).Ouranalysisof16businessfunctionsidentifiedjustfour—customeroperations,marketingandsales,softwareengineering,andresearchanddevelopment—thatcouldaccountforapproximately75percentofthetotalannualvaluefromgenerativeAIusecases.
Exhibit3
UsinggenerativeAIinjustafewfunctionscoulddrivemostofthetechnology’simpactacrosspotentialcorporateusecases.
Represent~75%oftotalannualimpactofgenerativeAI
Sales
Marketing
Softwareengineering
Software
(forproductdevelopment)
(forcorporateIT)engineering
Customeroperations
ProductandR&D1
Supplychain
Manufacturing
FinanceRiskandcompliance
Talentandorganization(inclHR)
Procurementmanagement
CorporateIT1Legal
Strategy
Pricing
0
10
20
40
30
Impactasapercentageoffunctionalspend,%
Note:Impactisaveraged.
¹Excludingsoftwareengineering.
Source:ComparativeIndustryService(CIS),IHSMarkit;OxfordEconomics;McKinseyCorporateandBusinessFunctionsdatabase;McKinseyManufacturingandSupplyChain360;McKinseySalesNavigator;Ignite,aMcKinseydatabase;McKinseyanalysis
McKinsey&Company
Notably,thepotentialvalueofusinggenerativeAIforseveralfunctionsthatwereprominentinourprevioussizingofAIusecases,includingmanufacturingandsupplychainfunctions,isnowmuchlower.7ThisislargelyexplainedbythenatureofgenerativeAIusecases,whichexcludemostofthenumericalandoptimizationapplicationsthatwerethemainvaluedriversforpreviousapplicationsofAI.
12TheeconomicpotentialofgenerativeAI:Thenextproductivityfrontier
GenerativeAIasavirtualexpert
InadditiontothepotentialvaluegenerativeAIcandeliverinfunction-specificusecases,thetechnologycoulddrivevalueacrossanentireorganizationbyrevolutionizinginternalknowledgemanagementsystems.GenerativeAI’simpressivecommandofnatural-languageprocessingcanhelpemployeesretrievestoredinternalknowledgebyformulatingqueriesinthesamewaytheymightaskahumanaquestionandengageincontin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年先进航空材料研发与供货合同
- 2024年专业版:不锈钢防盗门窗安装工程合同
- (2024版)云存储服务合同
- 2024年光伏发电项目工程分包合同
- 2024年光伏发电站设备采购与安装合同
- 2024年个人租赁单位赛车合同范本
- 空中出行新篇章
- 2024年专业工程中介服务合同
- 10KV供配电工程施工环保方案
- 2024年临时工雇佣合同
- 西方马克思主义哲(共74张PPT)
- 外贸业务员个人业务工作总结述职报告模板课件
- 血液透析中心火灾应急预案
- 二年级数学22-分物游戏-优秀课件
- 猴痘诊疗指南(2022年版)PPT
- 危大工程巡视检查记录
- 《科学社会主义的理论与实践》课件
- ACS患者随访管理表1-3-16
- 苗木供货服务计划方案
- 工业X射线探伤室设计简述
- 三年级上册美术课件-5.14 奇特的热带植物丨岭南版 (共16张PPT)
评论
0/150
提交评论