第3章随机过程通过线性系统_第1页
第3章随机过程通过线性系统_第2页
第3章随机过程通过线性系统_第3页
第3章随机过程通过线性系统_第4页
第3章随机过程通过线性系统_第5页
已阅读5页,还剩185页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

x1(t)x2(t)aL[x1(t)]+y(t-C)=L[x(t-y(t)=x(t)*h(t)=

y(w)=H

¥x(w)¥H(w)

Y(s)=H(s)Xs=s+t0

h(t)0 y(n)=x(n)*h(n)=x(n-k)h(k)=x(k)h(n-k

¥¥

y(z)=x(z)H(z)z=e如果当n<0时, h(n)=0,那么该系统称为因果系统。¥1t*f2¥

12t-tdtf1-*=

¥¥¥

f1f2tttfft-¥ ftt=ftftt-

=f1dt-t1¥tdt=dfttdt¥

¥ ¥=ftftdt-t1=ft-t1)

出为 y(t)=h(t)*x(t)= h(t)x(t-•:•:000 0¥0=h(t)E[X(t-0¥=h(t)m(t-

X(t)为平稳SP =mX(t)*

mY=mX0

2h(u)X(t-20¥0=h(u)E[X(t1)X(t2-0¥=0h(u)RX(t1,t2-¥

00

h(u)RX(t-

RY(t1,t2)=E[Y(t1)Y(t2)]=h(t1)*h(t2)*RX(t1,t2RY(t1,t2)=E[Y(t1)Y(t2)]=h(t1)*h(t2)*RX(t1,t2 h(v)X(t2- ¥¥=00h(u)h(v)E[X(t1-u)X(t2-¥=00h(u)h(v)RX(t1-u,t2-=¥

Rt-u,t-

=X1-u,t2- 0=0Y1-u,t20

=¥X,t2-vdv=1*RXY,t2

ht2*1RY(t1,t2)=E[Y(t1)Y(t2)]=h(t1)*h(t2)*RX(t1,t2¥¥ X(tn)]*h(t1)*h(t2)**h(tn

小mt=

¥ ¥

XRY(t1,t2)=h(t1)*h(t2)*RX(t1,t2

cos20t t=10e- mt=Yt=E

XtY

¥Xt-¥0t0t+M=0mYt=50

hudu=5¥10e-10tdt=2X(t)是相关函数为2

N0

系统的冲激响应为t=be-btUtb=t=tt

mt=Yt=E

XtY

¥Xt-¥¥=mX

¥RY=YtYtt¥=E=E

Xt-uu

hv

¥ XtXt¥=00

t+u-vdudv¥=¥

N

dt+u-vdudv¥ ¥¥¥=N¥¥

dt+u-vdvdu0=N0

¥t+udu=¥

¥be-bube-bt+udu 0N0=2

e-bt0

e-2bu

4由自相关函数的偶函数特性<0RY

N0b4

RY

N0b4

e-bQ=RY

N0b4¥RXY=RX)=¥

t-¥=N¥

dt-

,=2=

=N0t£

N02 =R=

N

dt- =N0, =2 NN0

R= 0e-0e-t冲激响应为tbe-btUt

b,Dfbb RY=YtYtt¥=0

R

t+u-vdudv¥=¥b2e-bue-¥

¥N¥N bu

t+udv

t+u

¥ ¥

e-bt-e-bt2 R

e-bt-e-bt

bNb2

N0b

RY» X(t也是宽遍历性的,且Y(tX(t)联合遍历)mXtmX ¥mY=mX0¥

= =0h(u)RX(t-

¥¥¥

RY(t1,t2)=0

Xt¥因为Y(t)=

Y(t+T)=0

输出Y(t+T) 和Y(t)分别是输入X(t+T) 和X(t)与h(t)的卷积,即可以表示成级数和的形式。由于随机信号X(t)是严平稳的,所以X(t)与X(t+T)具有相同的n维概率密度函数,这样Y(tT)与Y(t)也应该具有相同的n也是宽遍历性的,且Y(tX(t)联合遍历由X(t)X(t)=则输出

Y(t)=lim1

TYTTfi¥ T¥=lim1[h(u)X(t-T¥Tfi¥ ¥=[lim1¥

X(t-T Tfi¥ T¥

X(tY(t)Y(t+t)=lim1

Y(t)Y(tTTfi¥ T¥¥=[lim1¥¥

T Tfi¥ T¥=0 X(t)Y(t+t)=lim1

X(t)Y(tTTfi¥ TT¥=lim1[h(u)X(t+t-T¥Tfi¥ ¥=[lim1¥

T Tfi¥ T¥=0RX(t-

mYt=mXtt)mYw=mXwHw¥mY=mX0h(t)dt=mXH(w)w=0=mXH¥SY(w)=SX(w)H(w)H(-w)=SX(w)H(w)SY(s)=SX(s)H(s)H(-Y=RXX=RX

SY(w)=SXY(w)H(-w)=SYX(w)H(w)SY(s)=SXY(s)H(-s)=SYX(s)HF(s)

f(t)e-stdt¥¥

¥¥s=s+f(tf(t)e-例3.

2X(t)是相关函数为2

N0

系统的冲激响应为t=be-btUtb=t=tt

(1)0mY=mX¥0

w=0=mXH(0)=(2)2SYw=

wHw = 2b2+wRY

N0b4

e-b(3)Q=

N0b4(4) w= wHw= (

,

RYX=RXYt=N0t£ y(t)=0h(t)x(t- Y(n)=h(k)X(n-k ¥mY(n)=E[Y(n)]=h(k)E[X(n-k¥¥X(n)SP¥¥¥¥¥RXY(n,n+m)=E[X(n)Y(n+¥¥

XX

h(k)E[X(n)X(n+m-k¥

k

(nk=0+k RY(n,n+m)=E[Y(n)Y(n+ =E[(h(k)X(n-k))(h(j)X(n+m-¥ ¥=h(k)h(j)EX(n-k)X(n+m-k=0j¥=h(k)h(j)RX(n-k,n+m-¥k=0j¥RY=h(k)h(j)RX(m+k-¥k=0j¥

=h(k)h(j)RX(k-k=0j =m[h(k - k

z=1=H

SX(z)=H(z)S SX(SX(z)=H(z)S SX(z)=H(z-1z=eSYX(w)=H- X S(z)=H(z)H(z-1 (z)

S(w)=H(ejw)H(e-jw (w)=H(ejw

S2 2 =H(z-1 (z)=H RY(m)

S(z)zm-1dzYlY2R(m)=1 pH(ejw)S(w)ejmw 2p- EY2(n)= H(z)H(z-1 (z)z- 2pj 2EY2(n)=1 pH(ejw)S 2p- lz=HH-H- SY=SXHH =HH

SYw=Hw SY =H SYS,它的极点在Y-YSY)=S-+ Y-Y SYz)=S-zS+z =H- SY=S-+s YH=S-Yz=H-

SY=S-S+ YH=S-YSw

S

-25s2+

7-7+ s4

+ =sss-s+YS-Y

7+ss+YH=S-Y

7+ss+w4-

SYw=w

s4-s4-10s2+9

s-8+8- 8 ssssYS-Y-

s+8+ sss+8+ H=

ss=HH-=1

S= HHz H-=

H1

SX )S-+

S

XS-X

1XS-X

w=1.04+0.4cosw的白化滤波器SXw

1.04+e=e=

+e-jw+e-jw

z

z2 5z

z5+XS-X

X)XSXw

wSXw=w2+ww2+w2+

-s2+

3

+9

33+XS-X

33

XS-X

ss+S(w)=H2Yw)N02GY(w)

H(w)

wR(t)=N0

¥H¥

2jwt¥ 4p-¥

)

2

0h(u)h(u¥¥2p

H(w) )KDw)KDwe

H

DweY2t=N0

¥w2dw¥

2

NKYt=0 Kdw= Dwe

2¥0¥

H(w)max=H

ww

Dwe

H

H2¥0¥

Dwe

2

H-2jH)-

2t=N0¥2p¥

H2

(实际系统P=N0

(理想系统 和H(w) w

由Hw=

知H

w)=

+w

Hw

=Dwe

Hw

w2¥0¥

w¥=0

+w2

=barctanb =2 =Dwe= 2p

Hwb2b2+wb2+w2=2

Df=b例3.11计算低通滤波器Hw=2-w,w0 由Hw=2-w

Hw2=2-w,Hw)

=Dwe

Hw

Hw2¥0¥1=41

2-w2w=¥3¥ =Dwe= 2p

Hw2=(2-w(2Dw)22

Hw 22

Df=222H(w)= 0 A

GX(w)=

2

wH(w)= 0 A N0

GY(w)

GX(w)=

设设GX(w)=

H(w)= 0R(t)=

¥G(w)

1 1

Dw/2N02p2

coswdw2

Dwt

sinDwt

=N0ADw 设GX(w)=设

2

H(w)= 0GX(w)=

A0N0=

wH(w)= 0 A

KYKY

2

sinDwt= Dwt2

w GX(w)=H(w)=AsinDwt

¥t=r(t)dt

¥ dt=p=

Dwt2

Dww设设GX(w)=

¥x¥

dx=2

a>

H(w)=w–w0£Dw/2A

w–w0£Dw/2GX(w)=

0 0 N

w-

G(w)=H G(w)= R(t)=1 ¥G(w) = w0+Dw/2A2 cosww2p0-Dw/2 A2NDwsin(Dwt/= Dwt/2A2NDwsin(Dwt/ Dwt/2与a(tcosw0t相比,a(tcosw0t是

E[Y2(t)]

N00sinDwt

r(t)

KY

= coswt K R

Dwt 2sinDwtt=¥ dt=p=

Dwt2

DwE[Y2(t)]

N00sinDwt

r(t)

KY

= coswt K R

Dwt 2sinDwtt=¥ dt=p=

Dwt2

Dw

+exp

(w)= N 2

SX(w) Aexp

b2

b2

+exp

(w)= ¥

0+exp(w+w)20+exp

R(t)0A2exp0R(t)0A2exp0

b2

b2 e

+exp-

4p-¥

b2

b2 0N0=

¥¥

-2 w2e-2b b0

4

+exp

(w)=

+exp

(w)=

R(0)=A2N0

+exp

(w)= H(w)2

-2Dwe= dw=pb-22b2

H(w0 ¥-b t0=0

dt=难 nY(t)= nfi随)随)

w

2 0d 22解:2()()(

SX

wH

2b2+wR=1 wejwtdw YY2t=R)Y

N0b4

Yt=f

2y20 =pNbexp-Nb0

Xi为 量,它是 的

Dti‡

nn

ty>>ty>>

即ty 设有一个实值函数x(t),它 ˆ(t(H[x(tx(t)=ˆ(t)

p-¥t- =p-

ttdt h(t)=1« (jw)=-jsgn(w)=

f(t)«Fjw)F(jt)«2pf(-w)因为sgn(t)

jw

2«2psgn(-w)=-2p

hH(t)=p

«HH(jw)=-j[x(t)=H-1 ˆ(t[ =-p-

ˆ

ˆ(t (t)=-

ˆ(t)hH1(t)x(t)=ˆ(t)*hH1(t)=x(t)*hH(t)*

ˆ(thH1(t)x(t)=ˆ(t)*hH1(t)=x(t)*hH(t)* HH(jw)HH1(jw) HH1(jw)

HH(

=

(t)=-

ˆ(t) h(t)=1/

H(w) |H(w)| H(w) H(w)=

H(w)=

= w£w0>

tsw0tHt=-a(t)cosw0t 令t=a(t)cos=pw++dw- =1w+w+w-w =-w=-jw-w-w+w t=

t0

-t-jw0t=-

t2jsinw

=tnw 令1t=a(tsins=1*pw+w-dw-w s=jw+w-w-w 11=1-jsgnw1=-2w-w0+w+w0

1tejw

t-=tcos1=- 12 定义:给定任一实随机过程X定义一复随机过程%(t)%(t)jˆˆ(t)=H[X(t)]= ¥Xp-¥t-

是X(t) (1)X(tˆ

ˆ(t)=X(t)* (w)= (w)H(w) =SX(w)22ˆXH( X(tˆ (3)R

Rˆ(t)=ˆX ˆ代入ˆ(tp¥X(h)dht-h令t-h p¥ p¥l (3)R

Rˆ(t)=ˆX p¥l=1p1p¥Xt)1l=¥l=RˆX X(tˆ (3)R

Rˆ(t)=ˆXX (-t)=E[ˆ(t)X(t-t)]=Ep¥ ¥p1Xll=p¥l=1p¥l=X=-R 3.5.2Rˆ(-t)=-Rˆ (5)RXˆX(-t)=-RXˆX

%jRjˆXX[%%(tXXjˆjˆ[RX=2[RX(t)+jRXˆ R R()=2[R()+

(w)=-jSX 证明:由性质3,证明:由性质3, (t)=R(t)*hXXH两边取付氏变换得SXˆ(w)jsgn(w)SX(w)S(w)=-jSX X

352352 证明:由性质 %XˆS%jSXˆ=2[SX(w)+sgn(w)SX4SX(w)0 (w)=4SX 例3.14设平稳随机过程X(t)的功率谱密度为SXˆt是X(t) 变换,求Vt=Xtt+ˆtst,t+t=VtVtt=Xtt+ˆtsw0t·Xt+tsinw0t+t+ˆttcosttXtXt+t0t+ˆtˆttstcosw0tˆtXt+tsw0tsinw0t+Xtˆttnw0tcosw0tXtXt+t0t+ˆtˆttstcosw0tˆtXt+tsw0tsinw0t+Xtˆttnw0tcosw0t

in0tsinw0t+t+

sw0tR

sw0tsinw0t+t+R

nw0t=RXt-RXXˆpw+dwsinw0t«pw+w0-dw-w0SV=SXpw+w+dw- -1 *pw+w-dw- 2pXˆ =1Sw+w+ w j w+w-

w-w

Xˆ = *

ˆ=-jSXˆ

ptXX S=1

w+w+ w

-sgnw

w

+sgnw

w-w0=1 w-sgnw +1 w-w+w- 例3.15设平稳随机过程X(t)的功率谱密度为SXˆt是X(t) 变换,求Vt=Xtt-ˆtst,tt=VtVtt=Xtt-ˆtsw0t·Xt+tsinw0t+t-ˆttcosttXtXt+t0t+ˆtˆttstcosw0tˆtXt+tsw0tsinw0tXtˆttnw0tcosw0tXtXt+t0t+ˆtˆttstcosw0tˆtXt+tsw0tsinw0tXtˆttnw0tcosw0t

0tsinw0t+t+

sw0t-RˆX

st+t-

nw0t=RXt+RXˆpw+dwsinw0t«pw+w0-dw-w0SV=SXpw+w+dw- +1 *pw+w-dw- 2pXˆ =1Sw+w+ w +j w+w-

w-w

Xˆ = *

ˆ=-jSXˆ

ptXX S=1

w+w+ w

-sgnw

w

+sgnw

w-w0=1 w+w+w+ +1 w-sgnw h(t)=1« (jw)=-jsgn(w)=

f(t)«Fjw)F(jt)«2pf(-w)因为sgn(t)

jw

2«2psgn(-w)=-2p

hH(t)=p

«HH(jw)=-j定义:给定任一实随机过程X定义一复随机过程t%(t)jˆˆ(t)=H[X(t)]= ¥Xp-¥t-

是X(t) 3.5.2X(tˆ (3)R

Rˆ(t)=ˆXX (5)RXˆX(-t)=-RXˆX

%jRjˆX

(w)=-jSX

(w)=4SX

x(t) (w) w-w£w£w+w (w)= wcw0)SXSXt3.6X(t)=a(t)cosw0t-b(t)sinw0tXX(t)=a(t)cosw0t-b(t)sinw0ta(a(t)=X(t)cosw0t+ˆ(t)sinb(t)=-X(t)sinw0t+ˆ(t)

ˆ(t)=a(t)sinw0t+b(t)

3.6将X(t)表示成解析形式tX(tˆ 同时又 jw0tXt+ˆwt- =Xtcosw0t+ˆtnw0t+-Xtnw0t+ˆtcosw0t] t=tcosw0tˆtnt=tnˆtcosw0t~Xt-jw0t=t+~t=at+~~

t=t+jb(t)cosw=atcosw0t-b(t)sinw0t+tnw0t+b(t)cosw0tXt=atcosw0t-b(t)sinw0t3.6 b(t)E[a(t)]=E[b(t)]=

X(t)为平稳过程,且假设其均值为0 ˆXSa(w)=Sb(w)= SS[SX(w+w0)+SX(w-w0Sab(w)=- SS[SX(w+w0)-SX(w-w03.63.6.3 b(t)证明:因为X(t)和ˆ(t)都是实过程。 a(t)=X(t)cosw0t+ˆ(t)sinb(t)=-X(t)sinw0t+ˆ(t)所以 b(t)都是实随机过3.63.6.3

b(t)E[a(t)]=E[b(t)]= ˆXSa(w)=Sb(w)= SS[SX(w+w0)+SX(w-w0Sab(w)=- SS[SX(w+w0)-SX(w-w03.63.6.3E[a(t)]=E[b(t)]=E[X(t)]= E[ˆ(t)]=E[a(t)]=E[X(t)]cosw0t+E[ˆ(t)]sinw0t=3.63.6.3

b(t)E[a(t)]=E[b(t)]= ˆXSa(w)=Sb(w)= SS[SX(w+w0)+SX(w-w0Sab(w)=- SS[SX(w+w0)-SX(w-w03.63.6.3 Ra(t)E[a(t)a(t+t)]ˆˆ=RX(t)cosw0tcosw0(t+t)+RXXˆ(t)cosw0tsinw0(t+RXˆX(t)sinw0tcosw0(t+t)+RXˆ(t)sinw0tsinw0(t因为:

E[a2(t)]=Ra(0)=RX(0)<¥3.63.6.3 b(t)E[a(t)]=E[b(t)]= ˆXSa(w)=Sb(w)= SS[SX(w+w0)+SX(w-w0Sab(w)=- SS[SX(w+w0)-SX(w-w03.63.6.3证明:由性质3t3.63.6.3 b(t)E[a(t)]=E[b(t)]= ˆX

Sa(w)=Sb(w)= SS[SX(w+w0)+SX(w-w0Sab(w)=- SS[SX(w+w0)-SX(w-w03.63.6.3ˆX

=E[{X(t)cosw0t+ˆ(t)sinˆRˆX

(t)sinw0tsinw0(t+t)+RXXˆ(t)cosw0tcosw0(tR(t)=R ˆX

3.63.6.3 b(t)E[a(t)]=E[b(t)]= ˆXSa(w)=Sb(w)= SS[SX(w+w0)+SX(w-w0Sab(w)=- SS[SX(w+w0)-SX(w-w03.63.6.3证明:由性质3.63.6.3

b(t)E[a(t)]=E[b(t)]= ˆXSa(w)=Sb(w)= SS[SX(w+w0)+SX(w-w0Sab(w)=- SS[SX(w+w0)-SX(w-w03.63.6.3X

=E[{a(t)cosw0t-b(t)sinw0t}•{a(t+t)cosw0(t+t)-b(t+t)sinw0(t=Ra(t)cosw0tcosw0(t+t)-Rba(t)sinw0tcosw0(t-Rab(t)cosw0tsinw0(t+t)+Rb(t)sinw0tsinw0(t 3.63.6.3

b(t)E[a(t)]=E[b(t)]= ˆXSa(w)=Sb(w)= SS[SX(w+w0)+SX(w-w0Sab(w)=- SS[SX(w+w0)-SX(w-w03.63.6.3Sa(w)=Sb(w)= SS[SX(w+w0)+SX(w-w0 1Rew+e-iw

ew-e-iwt 2

SXˆ(w)=-jsgn(w)SX

3.63.6.3Sa(w)=Sb(w)= SS[SX(w+w0)+SX(w-w0S(w)=1S(w-w)+ +1-jsgn(w-w 2 =1 +1-sgn(w-w SS[SX(w+w0)+SX(w-w03.63.6.3Sa(w)=Sb(w)= SS[SX(w+w0)+SX(w-w0 0 2 0 2 23.63.6.3 b(t)E[a(t)]=E[b(t)]= ˆXSa(w)=Sb(w)= SS[SX(w+w0)+SX(w-w0Sab(w)=- SS[SX(w+w0)-SX(w-w03.63.6.3Sab(w)=- SS[SX(w+w0)-SX(w-w0ˆX =-1Rew-e-iwt

ew+e-iwt2

Sˆ(w)=-jsgn(w)SX(w)

3.6Sab(w)=- SS[SX(w+w0)-SX(w-w0 (w)=-1 (w-w)- (w+w 2 +1-jsgn(w-w

)SX(w+w0=-j{-1

(w+w0+1sgn(w-w

)SX(w+w0=- SS[SX(w+w0)-SX(w-w03.6Sab(w)=- SS[SX(w+w0)-SX(w-w0ttcosw0ttnff和Sabf): f0= f0=

=1f+f解:

S=1 pw+w+dw- 2p +1 *pw+w-dw- 2pXˆ =1Sw+w+ w +j w+w-

w-w

Xˆ = *

ˆ=-j

ptXXS=1

w+w+ w

-sgnw

w

+sgnw

S

w =1 w+w+w+ +1

w

-w ˆX =-1 *pw+w-dw- 2p +1 pw+w+dw- 2pXˆ =-jSw+w- w +1

w+w+

w-w

X

Xˆ 由于S

=-j

=-jSw+w- w -sgnw

w

-sgnw

S

w =1Sw+w- w +1w+w

w

+w

S

w =1 w+w+w+ -1 w-sgnw 例3.17设平稳随机过程Xt=twt+q-twt+q) p解 RX=ttt=twt+q-twt+qt+tw0t+t+q-t+tw0tt+qwt+qw0t+t+q+wt+qnw0tt+qwt+qnw0t+t+q+wt+qw0tt+q=Rnw-Rnwt+w0t+q=RnwRX=nw w=1Sw+w+Sw-w 3.6X(t)=A(t)cos[w0t+f(t)]

~t-

t+

t+Atejfttt+~

t=t)a(t))Xt-jw0t=tejft)~t=tejfteAt[cosw0t+jt+w0t+jtt=twt+3.6X(t)=A(t)cos[w0t+f(t)] X(t)=A(t)cos[w0t+f(t)]=A(t)cosw0tcosf(t)-A(t)sinw0tsina(t)=A(t) b(t)=A(t)sinX(t)=a(t)cosw0t-b(t)sinw0t

A(t)=a2(t)+b2f(t)=arctg工程上应用最多的窄带随机过程是窄带过程,因为不仅热噪声是过程,很多宽带噪声通过窄带系统后也成为窄带过程。因此,重点讨论窄带过程是很有必要的,当中放定理:当X(t为窄带随机过程,即X(tDww0,A(t)和f(t) b(t)是低频限带随机过程即它们的功率谱只在0£w£wc wcw0 E{[a(t+t)-a(t)]2}=E[a2(t+t)+a2(t)-2a(t)a(t=2Ra(0)-2Ra

=1wc

wc wc

jwt

p-wc Sa(w)dw-

Sa dw]

1

cc

Sac= S(w)(1-e cp-

aaSa(w)(1-

2 2 p p-

S(w)2sin

wt2

E{[a(t+t)-a(t)]}£wctRa(0)=wctE[aa a

S(w)2(wt )p- w此式说明:若t1,在tt+ta(t)wca(t)因为w

,即T2pT

,令t t=T<< wt=w

由 不等式:P{x-E(x)

令xa(t+T0a(t),注意E(x)E[a(t+T0E[a(t

P{[a(t+T0)-a(t)]-

E{[a(t+T0)-

w2T2E[a2 P{a(t+T0)-

足够小时,对于给定的e>右式趋近于0x(t为窄带随机过程时,在一个高频周期T0内,a(t)的变化大于e的概率趋于0。也就是说,a(t t X(t)=a(t)cosw0t-b(t)sinw0t

a(t)=A(t)b(t)=令t固定,

tb= t

3.6节性质

fab(at,bt)=fa(at)fb(bt

+b2 t A2 exp- J=

= =

A2

A exp-

A‡0,0£f£22

0

A2 A2= exp- 2p=texp-

¥s¥

ff (A,f)dA=

(A,f)=f(f)f(f Xt=twt-twt=twt+ A

fAt=texp- ¥

A2t=

AtfAtt

texp- 0s

A2

=-Ad

=2ps

AtA

=

=ps 2

A2fA

A2¥ =¥

t

exp- 02 2

A2

=-A2d

AA

t=¥2At

=¥ AAt AAt

2s ¥

2s2 0 0s =2-E2A=2s

2 X(t)=A(t)cos[w0t

A2

u=

= texp(- ),At‡ At=h(ut)=+

At‡f

)=

h(u

exp(-

exp(-ut t t

fA,At,At

f,f

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论