




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖州市重点中学2024届高二上数学期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.双曲线x21的渐近线方程是()A.y=±x B.y=±xC.y=± D.y=±2x2.设各项均为正项的数列满足,,若,且数列的前项和为,则()A. B.C.5 D.63.若,则x的值为()A.4 B.6C.4或6 D.84.已知直线与直线平行,则实数a值为()A.1 B.C.1或 D.5.已知F为椭圆的右焦点,A为C的右顶点,B为C上的点,且垂直于x轴.若直线AB的斜率为,则椭圆C的离心率为()A. B.C. D.6.设AB是椭圆()的长轴,若把AB一百等分,过每个分点作AB的垂线,交椭圆的上半部分于P1、P2、…、P99,F1为椭圆的左焦点,则的值是()A. B.C. D.7.已知向量分别是直线的方向向量,若,则()A. B.C. D.8.若、、为空间三个单位向量,,且与、所成的角均为,则()A.5 B.C. D.9.已知直线过点,且与直线垂直,则直线的方程为()A. B.C. D.10.某中学的校友会为感谢学校的教育之恩,准备在学校修建一座四角攒尖的思源亭如图它的上半部分的轮廓可近似看作一个正四棱锥,已知此正四棱锥的侧面与底面所成的二面角为30°,侧棱长为米,则以下说法不正确()A.底面边长为6米 B.体积为立方米C.侧面积为平方米 D.侧棱与底面所成角的正弦值为11.已知抛物线,则其焦点到准线的距离为()A. B.C.1 D.412.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校男教师的人数为()A.167 B.137C.123 D.113二、填空题:本题共4小题,每小题5分,共20分。13.已知,命题p:,;命题q:,,且为真命题,则a的取值范围为______14.设是椭圆上一点,分别是椭圆的左、右焦点,若,则的大小_____.15.某学校要从6名男生和4名女生中选出3人担任进博会志愿者,则所选3人中男女生都有的概率为___________.(用数字作答)16.已知直线与圆交于两点,则面积的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的焦点为F,为抛物线C上的点,且.(1)求抛物线C的方程;(2)若直线与抛物线C相交于A,B两点,求弦长.18.(12分)若等比数列的各项为正,前项和为,且,.(1)求数列的通项公式;(2)若是以1为首项,1为公差的等差数列,求数列的前项和.19.(12分)已知定点,动点满足,设点的轨迹为.(1)求轨迹的方程;(2)若点分别是圆和轨迹上的点,求两点间的最大距离.20.(12分)某莲藕种植塘每年的固定成本是2万元,每年最大规模的种植量是8万千克,每种植1万千克莲藕,成本增加0.5万元.种植万千克莲藕的销售额(单位:万元)是(是常数),若种植2万千克莲藕,利润是1.5万元,求:(1)种植万千克莲藕利润(单位:万元)为的解析式;(2)要使利润最大,每年需种植多少万千克莲藕,并求出利润的最大值.21.(12分)如图,已知圆C与y轴相切于点,且被x轴正半轴分成的两段圆弧长之比为1∶2(1)求圆C的方程;(2)已知点,是否存在弦被点P平分?若存在,求直线的方程;若不存在,请说明理由22.(10分)如图,在四棱锥中,平面平面,,,,,(Ⅰ)求证:;(Ⅱ)求二面角的余弦值;(Ⅲ)若点在棱上,且平面,求线段的长
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】根据双曲线渐近线定义即可求解.【题目详解】双曲线的方程为,双曲线的渐近线方程为,故选:D【题目点拨】本题主要考查了双曲线的简单几何性质,属于容易题.2、D【解题分析】由利用因式分解可得,即可判断出数列是以为首项,为公差的等差数列,从而得到数列,数列的通项公式,进而求出【题目详解】等价于,而,所以,即可知数列是以为首项,为公差的等差数列,即有,所以,故故选:D3、C【解题分析】根据组合数的性质可求解.【题目详解】,或,即或.故选:C4、A【解题分析】根据两直线平行的条件列方程,化简求得,检验后确定正确答案.【题目详解】由于直线与直线平行,所以,或,当时,两直线方程都为,即两直线重合,所以不符合题意.经检验可知符合题意.故选:A5、D【解题分析】根据题意表示出点的坐标,再由直线AB的斜率为,列方程可求出椭圆的离心率【题目详解】由题意得,,当时,,得,由题意可得点在第一象限,所以,因为直线AB的斜率为,所以,化简得,所以,,得(舍去),或,所以离心率,故选:D6、D【解题分析】根据椭圆的定义,写出,可求出的和,又根据关于纵轴成对称分布,得到结果详解】设椭圆右焦点为F2,由椭圆的定义知,2,,,由题意知,,,关于轴成对称分布,又,故所求的值为故选:D7、C【解题分析】由题意,得,由此可求出答案【题目详解】解:∵,且分别是直线的方向向量,∴,∴,∴,故选:C【题目点拨】本题主要考查向量共线的坐标表示,属于基础题8、C【解题分析】先求的平方后再求解即可.【题目详解】,故,故选:C9、A【解题分析】求出直线斜率,利用点斜式可得出直线的方程.【题目详解】直线的斜率为,则直线的斜率为,故直线的方程为,即.故选:A.10、D【解题分析】连接底面正方形的对角线交于点,连接,则为该正四棱锥的高,即平面,取的中点,连接,则的大小为侧面与底面所成,设正方形的边长为,求出该正四棱锥的底面边长,斜高和高,然后对选项进行逐一判断即可.【题目详解】连接底面正方形的对角线交于点,连接则为该正四棱锥的高,即平面取的中点,连接,由正四棱锥的性质,可得由分别为的中点,所以,则所以为二面角的平面角,由条件可得设正方形的边长为,则,又则,解得故选项A正确.所以,则该正四棱锥的体积为,故选项B正确.该正四棱锥的侧面积为,故选项C正确.由题意为侧棱与底面所成角,则,故选项D不正确.故选:D11、B【解题分析】化简抛物线的方程为,求得,即为焦点到准线的距离.【题目详解】由题意,抛物线,即,解得,即焦点到准线的距离是故选:B12、C【解题分析】根据图形分别求出初中部和高中部男教师的人数,最后相加即可.【题目详解】初中部男教师的人数为110×(170%)=33;高中部男教师的人数为150×60%=90,∴该校男教师的人数为33+90=123.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】先求出命题p,q为真命题时的a的取值范围,根据为真可知p,q都是真命题,即可求得答案.【题目详解】命题p:,为真时,有,命题q:,为真时,则有,即,故为真命题时,且,即,故a的取值范围为,故答案为:14、【解题分析】,,利用椭圆的定义、结合余弦定理、已知条件,可得,解得,从而可得结果【题目详解】椭圆,可得,设,,可得,化简可得:,,故答案为【题目点拨】本题主要考查椭圆的定义以及余弦定理的应用,属于中档题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.15、##0.8【解题分析】由排列组合知识求得所选3人中男女生都有方法数及总的选取方法数后可计算概率【题目详解】从6名男生和4名女生中选出3人的方法数是,所选3人中男女生都有的方法数为,所以概率为故答案为:16、##【解题分析】先求出的范围,再利用面积公式可求面积的最大值.【题目详解】圆即为,直线为过原点的直线,如图,连接,故,解得,此时,故的面积为,当且仅当时等号成立,此时即,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】(1)根据抛物线定义可得,从而得到抛物线C的方程;(2)设,联立抛物线方程,消去,可得的方程,运用韦达定理和弦长公式,计算可得所求值【题目详解】(1),所以,即抛物线C的方程.(2)设,由得所以,所以.【题目点拨】方法点睛:计算抛物线弦长方法,(1)若直线过抛物线的焦点,则弦长|AB|=x1+x2+p=(α为弦AB的倾斜角)(2)若直线不过抛物线的焦点,则用|AB|=·|x1-x2|求解18、(1)(2)【解题分析】(1)设公比为,则由已知可得,求出公比,再求出首项,从而可求出数列的通项公式;(2)由已知可得,而,所以,然后利用错位相减法可求得结果【小问1详解】设各项为正的等比数列的公比为,,,则,,,即,解得或(舍去),所以,所以数列的通项公式为.【小问2详解】因为是以1为首项,1为公差的等差数列,所以.由(1)知,所以.所以①在①的等式两边同乘以,得②由①②等式两边相减,得,所以数列的前项和.19、(1)(2)【解题分析】(1)设动点,根据条件列出方程,化简求解即可;(2)设,求出圆心到轨迹上点的距离,配方求最值即可得解.【小问1详解】设动点,则,,,又,∴,化简得,即,∴动点的轨迹E的方程为.【小问2详解】设,圆心到轨迹E上的点的距离∴当时,,∴.20、(1),;(2)6万千克,万元.【解题分析】(1)根据题意找等量关系即可求g(x)解析式,根据函数值可求a;(2)根据g(x)导数研究其单调性并求其最大值即可.【小问1详解】种植万千克莲藕的利润(单位:万元)为:,,即,,当时,,解得,故,;【小问2详解】,当时,,当时,,∴函数在上单调递增,在上单调递减,∴时,利润最大为万元.21、(1).(2).【解题分析】(1)由已知得圆心C在直线上,设圆C与x轴的交点分别为E、F,则有,,圆心C的坐标为(2,1),由此求得圆C的标准方程;(2)假设存在弦被点P平分,有,由此求得直线AB的斜率可得其方程再检验,直线AB与圆C是否相交即可.小问1详解】解:因为圆C与y轴相切于点,所以圆心C在直线上,设圆C与x轴的交点分别为E、F,由圆C被x轴分成的两段弧长之比为2∶1,得,所以,圆心C的坐标为(2,1),所以圆C的方程为;【小问2详解】解:因为点,有,所以点P在圆C的内部,假设存在弦被点P平分,则,又,所以,所以直线AB的方程为,即,检验,圆心C到直线AB的距离为,所以直线AB与圆C相交,所以存在弦被点P平分,此时直线的方程为.22、(Ⅰ)见解析.(Ⅱ).(Ⅲ).【解题分析】第一问根据面面垂直的性质和线面垂直的性质得出线线垂直的结论,注意在书写的时候条件不要丢就行;第二问建立空间直角坐标系,利用法向量所成角的余弦值来求得二面角的余弦值;第三问利用向
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广西壮族自治区玉林市陆川县2025届英语七下期末预测试题含答案
- 安全生产主要负责人考试题及答案
- 安全生产月测试题及答案
- 安全生产管理试题及答案
- 安全建设试题及答案
- 安全管理试题及答案计算
- 社区零售业态创新与数字化运营模式在2025年的市场趋势报告
- 课件改编培训方案模板
- 高校产学研合作技术转移中的科技成果转化与企业战略协同研究报告
- 原材料管理课件
- 课程替代申请表(模板)
- 设计管理资料课件
- 粮食行业技能竞赛粮油保管员考试试题及答案
- 剑桥商务英语BEC(初级)全套课件
- 浪琴环球马术冠军赛上海站官方赞助商合作方案课件
- 医疗器械临床评价课件
- 现场工程量确认单
- 2022年广东省佛山市顺德区承德小学小升初数学试卷
- 黄亮和李燕的创业故事(凤山书屋)
- DB61∕T 5006-2021 人民防空工程标识标准
- 洁净室尘埃粒子检测规范
评论
0/150
提交评论