版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
点的轨迹方程的求法第一页,共十二页,编辑于2023年,星期一求曲线方程的步聚:1、建立适当的直角坐标系,并设动点坐标2、列出动点满足的条件等式3、列方程4、化简5、检验1)已知给定长度的线段2)已知两条垂直的直线3)对称图形如何建立合适的直角坐标系?第二页,共十二页,编辑于2023年,星期一
1、直接法例1、求与圆x2+y2-4x=0外切且与Y轴相切的动圆的圆心的轨迹方程。PABxyo变式:外切改为相切呢?解:设动圆圆心为P(x,y).由题,得即-4x+y2=4|x|得动圆圆心的轨迹方程为y=0(x<0),或y2=8x(x>0)第三页,共十二页,编辑于2023年,星期一
x例2已知ΔABC底边BC的长为2,又知tanBtanC=t(t≠0).(t为常数).求顶点A的轨迹方程.
BC
A所求的轨迹方程为
tx2+y2=t
yo变式:把tgBtgC=t(t≠0)改为C=2B呢?tanC=tan2B
解:以BC所在直线为x轴,BC的垂直平分线为y轴,建立如图直角系。则B(-1,0),C(1,0).设A(x,y).又tanBtanC=t(x≠1)第四页,共十二页,编辑于2023年,星期一(2)求圆x2+y2-2x+4y=0关于直线x-y=0对称的圆方程。2、转移代入法变式:(1)中点改为MP:PA=t(t>0的常数)例3、圆上的点M与定点A(3,0)的线段MA的中点为P,求P点的轨迹。MPA(3,0)xyo第五页,共十二页,编辑于2023年,星期一例4
如图,过点A(-3,0)的直线l与曲线C:x2+2y2=4交于A,B两点.作平行四边形OBPC,求点P的轨迹。AoxyBCPG解法一:利用韦达定理解法二:点差法连PO交CB于G.设P(x,y),G(x0,y0),C(x1,y1),B(x2,y2),则x12+2y12=4x22+2y22=4作差,得(x2-x1)(x2+x1)+(y2-y1)(y2+y1)=0即x0+y0k=0又k=解得,x0=y0=x=y=因此消去k,得(x+3)2+y2=9故所求轨迹为(-3,0)为圆心,3为半径的圆.?3、参数法第六页,共十二页,编辑于2023年,星期一ABQPxyoG变式:已知圆:x2+y2=r2,定点A(a,0),其中a,r>0.P,B是圆上两点,作矩形PABQ,求点Q的轨迹。设P(x1,y1),B(x2,y2),则又ABPA,所以x1x2+y1y2=a(x1+x2)-a2=ax即(x1-a,y1)(x2-a,y2)=0,(x,y)(1)(2)(3)(4)(5)(3)2+(4)2,得(x+a)2+y2=2r2+2(x1x2+y1y2)结合(5),得点Q的坐标满足方程x2+y2=2r2-a2若,表示原点;讨论:若,表示原点为圆心,为半径的圆;若,无轨迹。解:连PB,AQ交于点G。设Q(x,y),G(x0,y0),则则x+a=2x0,y=2y0.第七页,共十二页,编辑于2023年,星期一ABQPxyoG又ABPA,所以(x,y)(1)(2)(3)另解:设Q(x,y),G(x0,y0),则x+a=2x0,y=2y0.设B(rcos,rsin),P(rcos,rsin),则第八页,共十二页,编辑于2023年,星期一1、抛物线的顶点的轨迹方程是
。练习y=2x,第九页,共十二页,编辑于2023年,星期一
依题意有A(-2,0),B(2,0),C(2,4a),D(-2,4a)设=k(0≤k≤1),由此有E(2,4ak),F(2-4k,4a),G(-2,4a-4ak)xy
2、(2003年高考第22题变式)已知常数a>0,在矩形ABCD中,AB=4,BC=4a,O为AB中点,点E,F,G分别在BC、CD、DA上移动,且,P为GE与OF的交点,求点P轨迹方程。ABCDEFGoP直线OF的方程为2ax+(2k-1)y=0……………①直线GE的方程为-a(2k-1)x+y-2a=0…………②从①②消去参数k,得点P(x,y)坐标满足方程2a2x2+y2-2ay=0(去掉(0,0))解:以AB所在直线为x轴,过o垂直AB直线为y轴,建立如图直角坐标系.第十页,共十二页,编辑于2023年,星期一直接法:转移代入法
(也称相关点法):所求动点M的运动依赖于一已知曲线上的一个动点M0的运动,将M0的坐标用M的坐标表示,代入已知曲线,所的方程即为所求.参数法:动点的运动依赖于某一参数(角度、斜率、坐标等)的变化,可建立相应的参数方程,再化为普通方程.一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度卫星导航系统服务合同
- 2024天然气运输物流信息化建设合同
- 2024常见签订劳动合同陷阱
- 2024年工程项目验收与交付合同
- 2024年建筑工程混凝土专项分包协议
- 2024年度吨不锈钢带打印功能电子地磅秤技术支持合同
- 2024年大数据服务合作协议
- 2024年度环保项目工程设计与施工合同
- 2024年度电子商务平台技术支持与运营服务合同
- 2024年度水果购销合同
- 污泥( 废水)运输服务方案(技术方案)
- 公司章程范本杭州工商docx
- 职业院校面试题目及答案
- 全护筒跟进旋挖施工方案
- 海水淡化处理方案
- 初中数学基于大单元的作业设计
- 小学一年级下册数学期末考试质量分析及试卷分析
- 原材料情况说明范本
- 相邻企业间安全管理协议
- 装饰装修工程售后服务具体措施
- 乙炔发生器、电石库安全检查表
评论
0/150
提交评论