![山东省各地2024届高二上数学期末检测模拟试题含解析_第1页](http://file4.renrendoc.com/view/623b91d9cea5f6a72c74aa217e8f1dc7/623b91d9cea5f6a72c74aa217e8f1dc71.gif)
![山东省各地2024届高二上数学期末检测模拟试题含解析_第2页](http://file4.renrendoc.com/view/623b91d9cea5f6a72c74aa217e8f1dc7/623b91d9cea5f6a72c74aa217e8f1dc72.gif)
![山东省各地2024届高二上数学期末检测模拟试题含解析_第3页](http://file4.renrendoc.com/view/623b91d9cea5f6a72c74aa217e8f1dc7/623b91d9cea5f6a72c74aa217e8f1dc73.gif)
![山东省各地2024届高二上数学期末检测模拟试题含解析_第4页](http://file4.renrendoc.com/view/623b91d9cea5f6a72c74aa217e8f1dc7/623b91d9cea5f6a72c74aa217e8f1dc74.gif)
![山东省各地2024届高二上数学期末检测模拟试题含解析_第5页](http://file4.renrendoc.com/view/623b91d9cea5f6a72c74aa217e8f1dc7/623b91d9cea5f6a72c74aa217e8f1dc75.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省各地2024届高二上数学期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数在和处的导数的大小关系是()A. B.C. D.不能确定2.命题“存在,”的否定是()A.存在, B.存在,C.对任意, D.对任意,3.下列命题中正确的个数为()①若向量,与空间任意向量都不能构成基底,则;②若向量,,是空间一组基底,则,,也是空间的一组基底;③为空间一组基底,若,则;④对于任意非零空间向量,,若,则A.1 B.2C.3 D.44.已知抛物线的焦点为F,过F作斜率为2的直线l与抛物线交于A,B两点,若弦的中点到抛物线准线的距离为3,则抛物线的方程为()A. B.C. D.5.已知等差数列的公差为,前项和为,等比数列的公比为,前项和为.若,则()A. B.C. D.6.下列椭圆中,焦点坐标是的是()A. B.C. D.7.在圆上任取一点P,过点P作x轴的垂线段PD,D为垂足,当点P在圆上运动时,线段PD的中点M的轨迹记为C,则曲线C的离心率为()A. B.C. D.8.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若,则|QF|=()A. B.C.3 D.29.若数列为等比数列,且,,则()A.8 B.16C.32 D.6410.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A. B.C. D.11.若直线被圆截得的弦长为,则的最小值为()A. B.C. D.12.设圆上的动点到直线的距离为,则的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设双曲线的焦点为,点为上一点,,则为_____.14.函数极值点的个数是______15.若直线:x-2y+1=0与直线:2x+my-1=0相互垂直,则实数m的值为________.16.若,,都为正实数,,且,,成等比数列,则的最小值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设数列的前项和为,,且满足,.(1)求数列的通项公式;(2)证明:对一切正整数,有.18.(12分)已知点,直线:,直线m过点N且与垂直,直线m交圆于两点A,B.(1)求直线m的方程;(2)求弦AB的长.19.(12分)如图所示,在四棱锥中,平面,底面是等腰梯形,.且(1)证明:平面平面;(2)若,求平面与平面的夹角的余弦值20.(12分)已知圆的圆心为,且圆经过点(1)求圆的标准方程;(2)若圆:与圆恰有两条公切线,求实数的取值范围21.(12分)已知平面直角坐标系上一动点满足:到点的距离是到点的距离的2倍.(1)求点的轨迹方程;(2)若点与点关于直线对称,求的最大值.22.(10分)已知函数(1)解关于的不等式;(2)若不等式在上有解,求实数的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】求出函数导数即可比较.【题目详解】,,所以,即.故选:A.2、D【解题分析】特称命题的否定:将存在改任意并否定原结论,即可知正确答案.【题目详解】由特称命题的否定为全称命题,知:原命题的否定为:对任意,.故选:D3、C【解题分析】根据题意、空间向量基底的概念和共线的运算即可判断命题①②③,根据空间向量的平行关系即可判断命题④.【题目详解】①:向量与空间任意向量都不能构成一个基底,则与共线或与其中有一个为零向量,所以,故①正确;②:由向量是空间一组基底,则空间中任意一个向量,存在唯一的实数组使得,所以也是空间一组基底,故②正确;③:由为空间一组基底,若,则,所以,故③正确;④:对于任意非零空间向量,,若,则存在一个实数使得,有,又中可以有为0的,分式没有意义,故④错误.故选:C4、B【解题分析】设出直线,并与抛物线联立,得到,再根据抛物线的定义建立等式即可求解.【题目详解】因为直线l的方程为,即,由消去y,得,设,则,又因为弦的中点到抛物线的准线的距离为3,所以,而,所以,故,解得,所以抛物线的方程为故选:B.5、D【解题分析】用基本量表示可得基本量的关系式,从而可得,故可得正确的选项.【题目详解】若,则,而,此时,这与题设不合,故,故,故,而,故,此时不确定,故选:D.6、B【解题分析】根据给定条件逐一分析各选项中的椭圆焦点即可判断作答.【题目详解】对于A,椭圆的焦点在x轴上,A不是;对于B,椭圆,即,焦点在y轴上,半焦距,其焦点为,B是;对于C,椭圆,即,焦点在y轴上,半焦距,其焦点为,C不是;对于D,椭圆,即,焦点在y轴上,半焦距,其焦点为,D不是.故选:B7、B【解题分析】设,,则由题意可得,代入圆方程中化简可得曲线C的方程,从而可求出离心率【题目详解】设,,则,得,所以,因为点在圆上,所以,即,所以点的轨迹方程为,所以,则所以离心率为,故选:B8、C【解题分析】过点Q作QQ′⊥l交l于点Q′,利用抛物线定义以及相似得到|QF|=|QQ′|=3.【题目详解】如图所示:过点Q作QQ′⊥l交l于点Q′,因为,所以|PQ|∶|PF|=3∶4,又焦点F到准线l的距离为4,所以|QF|=|QQ′|=3.故选C.【题目点拨】本题考查了抛物线的定义应用,意在考查学生的计算能力.9、B【解题分析】设等比数列的公比为,根据等比数列的通项公式得到,即可求出,再根据计算可得;【题目详解】解:设等比数列公比为,因为、,所以,所以;故选:B10、C【解题分析】根据题先求出阅读过西游记人数,进而得解.【题目详解】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C【题目点拨】本题考查容斥原理,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题11、D【解题分析】先根据已知条件得出,再利用基本不等式求的最小值即可.【题目详解】圆的标准方程为,圆心为,半径为,若直线被截得弦长为,说明圆心在直线:上,即,即,∴,当且仅当,即时,等号成立故选:D.【题目点拨】本题主要考查利用基本不等式求最值,本题关键是求出,属常规考题.12、C【解题分析】求出圆心到直线距离,再借助圆的性质求出d的最大值与最小值即可.【题目详解】圆的方程化为,圆心为,半径为1,则圆心到直线的距离,即直线和圆相离,因此,圆上的动点到直线的距离,有,,即,即的取值范围是:.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】将方程化为双曲线的标准方程,再利用双曲线的定义进行求解.【题目详解】将化为,所以,,由双曲线的定义,得:,即,所以或(舍)故答案为:.14、0【解题分析】通过导数判断函数的单调性即可得极值点的情况.【题目详解】因为,,所以在上恒成立,所以在上单调递增,所以函数的极值点的个数是0,故答案为:0.15、1【解题分析】由两条直线垂直可知,进而解得答案即可.【题目详解】因为两条直线垂直,所以.故答案为:1.16、##【解题分析】利用等比中项及条件可得,进而可得,再利用基本不等式即得.【题目详解】∵,,都为正实数,,,成等比数列,∴,又,∴,即,∴,∴,当且仅当,即取等号.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2)证明见解析.【解题分析】(1)利用关系可得,根据等比数列的定义易知为等比数列,进而写出的通项公式;(2)由,将不等式左侧放缩,即可证结论.【小问1详解】当时,,,两式相减得:,整理可得:,而,所以是首项为2,公比为1的等比数列,故,即,.【小问2详解】,..18、(1)(2)【解题分析】(1)求出斜率,用点斜式求直线方程;(2)利用垂径定理求弦长.【小问1详解】因为直线:,所以直线的斜率为.因为直线m过点N且与垂直,所以直线的斜率为,又过点,所以直线:,即【小问2详解】直线与圆相交,则圆心到直线的距离为:,圆的半径为,所以弦长19、(1)证明见解析(2)【解题分析】(1)由线面垂直的判定定理可得平面,再由面面垂直的判定定理可得平面平面;(2)以为坐标原点,以,所在直线分别为,轴,以过点垂直于平面的直线为轴建立空间直角坐标系.求出平面的一个法向量、平面的法向量,由二面角的空间向量求法可得答案.【小问1详解】因为四边形是等腰梯形,,所以,所以,即因为平面,所以,又因为,所以平面,因为平面,所以平面平面【小问2详解】以为坐标原点,以,所在直线分别为,轴,以过点垂直于平面的直线为轴建立如图所示的空间直角坐标系设,则,所以,,,由(1)可知平面的一个法向量为设平面的法向量为,因为,,所以得令,则,,所以,则,所以平面与平面的夹角的余弦值为.20、(1);(2).【解题分析】(1)根据给定条件求出圆C的半径,再直接写出方程作答.(2)由给定条件可得圆C与圆O相交,由此列出不等式求解作答.【小问1详解】依题意,圆C的半径,所以圆的标准方程是:.【小问2详解】圆:的圆心,半径为,因圆与圆恰有两条公切线,则有圆O与圆C相交,即,而,因此有,解得,所以实数的取值范围是.21、(1)(2)【解题分析】(1)直接法求动点的轨迹方程,设点,列方程即可.(2)点关于直线对称的对称点问题,可以先求出点到直线的距离最值的两倍就是的距离,也可以求出点的轨迹方程直接求解的距离.【小问1详解】设,由题意,得:,化简得,所以点轨迹方程为【小问2详解】方法一:设,因为点与点关于点对称,则点坐标为,因为点在圆,即上运动,所以,所以点的轨迹方程为,所以两圆的圆心分别为,半径均为2,则.方法二:由可得:所以点的轨迹是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物联网时代的网络安全技术及管理策略
- 3 桂花雨(说课稿)-2024-2025学年统编版语文五年级上册
- 2023九年级数学上册 第2章 一元二次方程2.2 一元二次方程的解法2.2.1 配方法第3课时 用配方法解二次项系数不为1的一元二次方程说课稿 (新版)湘教版
- Unit 6 Food Lesson 1(说课稿)-2024-2025学年人教精通版(2024)英语三年级上册001
- 2025房地产委托合同书范本
- 2023九年级数学上册 第二十四章 圆24.2 点和圆、直线和圆的位置关系24.2.2 直线和圆的位置关系第3课时 切线长定理说课稿(新版)新人教版001
- 2《我爱我们的祖国》说课稿-2024-2025学年统编版语文一年级上册
- Unit1 Making friends Part C Make a mind map of making friends(说课稿)-2024-2025学年人教PEP版(2024)英语三年级上册
- 2《我是什么》(说课稿)2024-2025学年二年级上册语文统编版
- 2025关于招标合同的报告
- 构建绿色低碳的城市生态系统
- 春节习俗中的传统节日服饰与装扮
- 儿童编程课件
- (完整word版)英语四级单词大全
- 武装押运操作规程完整
- 混合动力汽车构造与检修(高职新能源汽车专业)PPT完整全套教学课件
- 小学体育《运动前后的饮食卫生》课件
- 薪酬专员岗位月度KPI绩效考核表
- 技能大赛题库(空分)
- 污水处理厂设备的操作规程(完整版)
- GB/T 28419-2012风沙源区草原沙化遥感监测技术导则
评论
0/150
提交评论